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SteppedJmpedance Transformers and Filter Prototypes*

LEO YOUNG~, SENIOR MEMBER, IRE

Summary—Quarter-wave transformers are widely used to ob-

tain an impedance match within a specified tolerance between two
lines of different characteristic impedances over a specified fre-
quency band. This paper gives design formulas and extensive tables
of designs, most of which were especially derived so that an inte-
grated account could be presented for the first time. Numerous

examples are given. Only homogeneous, synchronous transformers
and filters are included in this paper, but a short bibliography on re-

lated topics is appended.
The theory is also applied to band-pass filters, by showing how

to convert quarter-wave transformers into half-wave filter prototypes.
The theoretical and numerical results presented are applicable to the

design of impedance transformers, dhect-coupled cavity filters,

short-line low-pass filters, optical antireflection coatings and inter-
ference filters, acoustical transformers, branch-guide dkectional
couplers, TEM-mode coupled-transmission-line directional couplers,
and other circuits. These applications have been or will be dealt with

in separate papers; this paper gives the basic theory and some of the
numerical data required for these applications.

1. INTRODLTCTION

T
HE OBJECTIVE of this paperl is to extend and

consolidate the theory of the quarter-wave trans-

former, with two applications in mind: the first

application is as an impedance-matching device or,

literally, transformer; the second is as a prototype cir-

cuit, which shall serve as the basis for the design of

various filters and directional couplers.

* Received April 9, 1962. This work was sponsored by the LT. S.
Army Signal Research and Development Laboratory, Fort N!om
mouth, N. J., under contract No. D.+ 36-039 SC 87398.

~ Stanford Research Institute,. Menlo Park, Calif.
1.1 more complete treatment M given in [1 ], on which this paper

is based.

This paper is organized into nine parts, with the fol-

lowing purpose and content:

Section I is introductory. It also discusses applica-

tions, and gives a number of definitions.

Sections II and III deal with the performance char-

acteristics of quarter-wave transformers and half-wave

filters. In these parts the designer will find what can be

done, not how to do it.

Sections IV to IX tell how to design quarter-wave

transformers and half-wave filters. If simple general

design formulas were available, solvable by nothing

more complicated than a slide-rule, these parts would be

much shorter.

Section IV gives exact formulas and numerical solu-

tions for Chebyshev and maximally flat transformers of

up to four sections.

Section V gives exact numerical solutions for maxi-

mally flat (but not Chebyshev) transformers of up to

eight sections.

Section VI gives a first-order theory [or Cheb ysh ev

and maximally flat transformers of up to eight sections,

with explicit formulas and numerical tables. [t also

gives a general first-order formula, and refers to existing

numerical tables published elsewhere which are suitable

for up to 39 sections, and for relatively wide (but not

narrow) bandwidths.

Section VII presents a modified first-order theory, ac-

curate for larger transformer ratios than can be design[ed

by the (unmodified) first-order theory of Section VI

Sections VII I and IX apply primarily to prototypes
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for filters, since they are concerned with large impedance

steps. They become exact only in the limit as the output-

to-input impedance ratio R tends to infinity. Simple for-

mulas are given for any number of sections, and previ-

ously published numerical tables on lumped-constant

filters are referred to.

Sections VIII and IX complement Sections VI and

VII which give exact results only in the limit as R tends

to zero. It is pointed out that the dividing line between

‘(small R“ and ‘(large R“ is in the order of [2/(quarter-

wave transformer bandwidth) ]z”, where n is the number

of sections. This determines whether the first-order

theory of Sections VI and VII, or the formulas of

Sections VIII and IX, are to be used. An example

(Example 9) where R is in this borderline region is

solved by both the “small R“ and the “large R)’ ap-

proximations, and both methods give tolerably good

results for most purposes.

Quarter-wave transformers have numerous applica-

tions besides being impedance transformers; an under-

standing of their behavior gives insight into many other

physical situations not obviously connected with im-

pedance transformations. The design equations and nu-

merical tables have, moreover, been developed to the

point where they can be used conveniently for the syn-

thesis of circuits, many of which were previously dif-

ficult to design.

Circuits that can be designed using quarter-wave

transformers as a prototype include: direct-coupled

cavity filters [2]; impedance transformers [3 ]– [8 ]; opti-

cal interference filters and antireflection coatings [9],

[1o]; acoustical transformers [11], [12]; filters with

quarter-wavelength resonators [13 ]; branch-guide cou-

plers [14]; half-wave filters [IS ]; and short-line low-

pass filters. It is intended to follow up this paper with

others that will explain the design of some of these cir-

cuits, using the results and data published in this paper.

The insertion loss functions considered here are all for

maximally flat or Chebyshev response in the pass band.

It is of interest to note that occasionally other response

shapes may be desirable. Thus TENf-mode coupled-

transmission-line directional couplers are analytically

equivalent to quarter-wave transformers [16], but re-

quire insertion loss functions with maximally flat or

equal-ripple characteristics in the sto@band. Other in-

sertion loss functions may be convenient for other appli-

cations. For instance, in optics refractive index cor-

responds to characteristic admittance, but is not as

easily realized because of a limitation in available ma-

terials. The case when some refractive indexes (char-

acteristic admittances) are given a flriori leads to inser-

tion loss functions different from those considered

here [17].

As in the design of all microwave circuits, one must

distinguish between the ideal circuits anal yzed, and the

actual circuits that have prompted the analysis, and

which are the desired end product. To bring this out

explicitly, we shall start with a list of definitions [18]:

Homogeneous transforme~—a transformer in which the

ratios of internal wavelengths and characteristic im-

pedances at different positions along the direction of

propagation are independent of frequency.

Inhomogeneous transformer—a transformer in which

the ratios of internal wavelengths and characteristic

impedances at different positions along the direction

of propagation may change with frequency.

Qua~te~-wave transfo~mer—a cascade of sections of

lossless, uniformz transmission lines or media, each

section being one-quarter (internal) wavelength long

at a common frequency. Note: Homogeneous and in-

homogeneous quarter-wave transformers are now de-

fined by a combination of the above definitions. For

instance, an inhornogeneoas quarter-wave transformer

is a quarter-wave transformer in which the ratios of

internal wavelengths and characteristic impedances,

taken between different sections, may change with

frequency.

Ideal junction-the connection between two imped-

ances or transmission lines, when the electrical effects

of the connecting wires, or the junction discontinui-

ties, can be neglected. (The junction effects may later

be represented by equivalent reactance and trans-

formers, or by positive and negative line lengths,

etc.)

Ideal quarter-wave transformer—a quarter-wave trans-

former in which all of the junctions (of guides or

media having different characteristic impedances)

may be treated as ideal junctions.

Half-wave filter-a cascade of sections of Iossless uni-

form transmission lines or media, each section being

one-half (internal) wavelength long at a common

frequency.

Synchronous tuning condition-a filter consisting of a

series of discontinuities spaced along a transmission

line is synchronously tuned if, at some fixed frequency

in the pass band, the reflections from any pair of

successive discontinuities are phased to give the maxi-

mum cancellation. (A quarter-wave transformer is a

synchronously tuned circuit if its impedances form a

monotone sequence. A half-wave filter is a synchro-

nously tuned circuit if its impedances alternately in-

crease and decrease at each step along its length. )

Synchronous frequency-the “fixed frequency” re-

ferred to in the previous definition will be called the

synchronous f~eqwency. (In the case of quarter-wave

transformers, all sections are one-quarter wavelength

long at the synchronous frequency; in the case of

2 A uniform transmission line, medium, etc., is here defined as one
in which the physical and electrical characteristics do not change with
distance along the direction of propagation. This is a generahzation
of the IRE definition of uniform ztwuegzde (See [19]).
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half-wave filters, all sections are one-half wavelength

long at the synchronous frequency. Short-line low-

pass filters may also be derived from half-wave filters,

with the synchronous frequency being thought of as

zero frequency. )

The filters and transformers considered here are

limited to homogeneous, synchronous types. For inhomo-

geneous [1], [7], [8], [18] or nonsynchronous [20]

transformers, the additional bibliography should be

consulted; this also lists references on the effect of dis-

sipation losses and on the power handling capacity,

which are not treated here.

Connection with Impedance Inverters

The realization of transmission-line discontinuities by

impedance steps is equivalent to their realization by

means of impedance inverters, popularized by Cohn.

The main difference is that while impedance steps can be

physically realized over a wide band of frequencies, at

least for small steps, the impedance inverters can be

physically realized over only small bandwidths. As far

as using either circuit as a mathematical model, or pro-

totype circuit, is concerned, they give equivalent results,

as can be seen from Fig. 1.
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Fig. 1—Connection between impedance step and impedance inverter.

1 I. THE PERFORMANCE OF QUARTER-WAVE

TRANSFORMERS

This section summarizes the relationships between

the pass-band ancl stop-band attenuation; the fractional

bandwidth w~ and the number of sections or resonators

n. Although the expressions obtained hold exactly only

for ideal transformers, they hold relatively accurately

for real physical transformers and for certain filters,

either without modification or after simple corrections

have been applied.

A quarter-wave transformer is depicted in Fig. 2.

Define the quarter-wave transformer fractional band-

width WQ by

(1)

where h~l and AQZ are the longest and shortest guide

wavelengths, respectively, in the pass band of the

quarter-wave transformer. The length, L, of each section

(Fig. 2) is nominally one-quarter wavelength at center

frequency and is given by

where the center frequency is defined as that frequency

at which the guide wavelength ho is equal to hQO.

When the transmission line is nondispersive, the free-

space wavelength A may be used in (1) and (2), which

then become

and

A,k, Ao

L= — (4)
2(AI + X2) – 1’

where j stands for frequency.

t-l8
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r, r-z r, r~ -—– r “+!

Fig. 2—Quarter-wave transformer notation.

The transducer loss ratio is defined as the ratio of

P.Vzil, the available generator power, to P~, the power

actually delivered to the load. The ‘texcess loss” 8 is

herein defined by

(5)

For the maximally flat quarter-wave transformer of n

sections and over-all impedance ratio R (Fig. 2), & is

given by

JR-1)’
cosz” o = & COS2”0,

4R

where

%- Xgo
9.77,

9

(6)

(7)

Aoo being the guide wavelength at band center, wlhere



342 IRE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES September
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Fig. 3—Quarter-wave transformer characteristics.
(a) Maximally flat. (b) Chebyshev.

0 =7r/2; and where

(8)

is the greatest excess loss possible. (It occurs when 0 is an

integral multiple of r, since the sections then are an

integral number of half-wavelengths long. )

The 3-db fractional bandwidth of the maximally flat

quarter-wave transformer is given by

‘@’’=+sin-’[#%”””” “)
The fractional bandwidth of the maximally flat

quarter-wave transformer between the points of x-db

attenuation is given by

4

{

4R[antilog (.Y/IO) – 1]~ 112~
W*, Z d~ = — sin–l

T (R – 1)’ ‘f “ ‘1”)

For the Chebyshev transformer of fractional band-

width Wq,

~ = (R – 1)* Tr,’(coso/po))

4R ~n’(1/wJ) /, (11)

= &rTn2(cos 0/po) J

where

()7rwq

po=sin —,
4

(12)

T. is a Chebyshev polynomial (of the first kind) of order

n, and where the q~antity

(R – 1)’ 1 c.
8, = —

4R
(13)

“ T.2(1/PO) Tn*(l/po)

is the maximum excess loss in the pass band. [Compare

also (18), below. ] The shape of these response curves

for maximally flat and Chebyshev quarter-wave trans-

formers is shown in Fig. 3. INotice that the peak trans-

ducer loss ratio for any quarter-wave transformer is

:’””~’””

y 004 ~ \ I I I \ 1 I Iv I n.4

I -d 002 y< \
3

\ \ \ z
&

~

n-l n=3

~ 002 — — — — — — — —\ — —
n.2

001 3

\ , ~

~

o

0010 \ b
7 4 6 8 10 12 ,40005

LOGIOR

Fig. 4—3-db bmldwidths of maximally flat transformers.

(14)

and is determined solely by the output-to-input im-

pedance ratio, R.

For the maximally flat transformer, the 3-db frac-

tional bandwidth, WQ, Mb k plotted against log R for

n = 2 to n = 15 in Fig. 4. The attenuation given by (6)

can also be determined from the corresponding lumped-

constant low-pass prototype filter, which is available

graphically in several references [2 I ], [22] to n = 7 and

higher. If co’ is the frequency variable of the maximally

flat, lumped-constant, low-pass prototype, and uI’ is its

band edge, then

co’ Cos e
—=— > (15)
WI’ Pa

where I-LOis defined by (12), and w~ (which occurs in the

definition of PO) is the fractional bandwidth of the

maximally flat quarter-wave transformer between

points of the same attenuation as the attenuation of the

maximally flat low-pass filter at co’ = col’. This enables

one to turn existing charts of attenuation vs ~’/wl’

(usually 01’ corresponds to the 3-db points) into charts

of attenuation vs cos 0 of the quarter-wave transformer,

using (15).

For the Chebyshev transformer,

&.
(16)= Tnql//.Lo) = M(M, %) ,

K

where M is thus defined as a function of the number of

sections n and the bandwidth w~. It shows how much

the pass-band tolerance increases when it is desired to

improve the peak rejection. The function M in (16) is

given in Table I for all fractional bandwidths, Wo, in
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‘+ nleallh “multiply by 10’, ” ,lnd soon

steps of 10 per cent, for n=? to rL= 15. The smallest m-here 1“, is the ripple tTSWR (maximum VSWRin the

fractional bandwidth in Table I is w,= O.1. For small

bandwidths,

pass band), together with (8) and (16). The maximum

VSWR for R less than 100 is also tabuklted in [1] and

[6].

Example 1: Determine the minimum number of sec-

tions for a transformer of impedance ratio R = 100 to

have a VSWR of less than 1.15 over a 100 per cent

bandwidth (w, = 1.0).

Frolm (18), for 17,=1.15,

&, = 0.00489 (19)

and from (8), for R= 100,

&a = 24.5. (20)

Hence, (16) gives

M(U, W,) = Tn’(l/po) = ; = 0.501 x 1o’. (21)
T

From Table 1, in the column ZUV= 1.0, it is seen that this

value of M(n, Wq) falls between n = 5 and n =6. There-

fore, the transformer must have at least six sections.

(See also Example 6.)

& 1 8 ‘“

()
= Tn’(l,/’po)= ; ~ , (w.small). (17)

g q

The attenuation given by (11) for the Chebyshev

quarter-wave transformer can also be determined from

graphs of the corresponding lumped-constant, low-

pass, prototype jilter [as already explained for the

maximally flat case in connection with (15) ] by using

the same (15) except that now W’ is the Chebyshev

(equal-ripple) band edge of the low-pass filter.’

The maximum VSWR may be worked out from Table

1, using- the relation

(v, – 1)’
&, =

4V.
(18)

a In [21], the lumped-constant characteristics for the Chebyshev
filters are plotted against a frequency scale normalized with respect
to the 3-db point and not the equal-ripple band edge. Since the curves
in [21] are all plotted down to the equal-ripple baud edge, this band-
edge frequency can be read off and all frequencies divided by it, thus
making co’/til’ = 1 at the equal-ripple band edge before applying (15 ).
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II 1. THE PERFORMANCE OF HALF-WAVE FILTERS ELECTRICAL

LENGTHS
+e’+e’+ ~e’~

The half-wave filter was defined in Section 1. It is

shown in Fig. 5. Its fractional bandwidth ~b is defined

[compare (1) ] by

‘h= 2(??:)

~’”~
(22)

NORMALIZED
IMPEDANCES

and the length L’ of each section [compare (2)] is

where h~l and h~z are the longest and shortest wave-

lengths, respectively, in the pass band of the half-wave

jilter. This can” be simplified for nondispersive lines by

dropping the suffix “g,” as in (3) and (4). A half-wave

filter with the same function VSWR’S V, (Figs. 2 and 5)

as a quarter-wave transformer of bandwidth Wg has a

(23)

JUNCTION VSWR’S

VI V2 V3 v“
Vn+l

REFLEGTION
COEFFICIENTS

i r, ~r2 +r~ ——— ~ro ~rn+,

bandwidth

w}, = ;Wq

since its sections are twice as long and

quency-sensitive. The performance of a

generally can be cletermined directly

.,

(24)
1/ I Ljl I \.

0 1/2 , $(2

NORMAL WED FREQUENCY, f OR, NORMALIZED RECIPROCAL GUIDE WAVELENGTH Ig, /!.g

Fig, 5—Half-wa~,e filter notation

““’1A ! /+

so twice as fre- (a)

half-wave filter
VSWR

from the per- A!A!
formance of the quarter-wave transformer with the

same number of sections n and junction VSWR’S 1’,,

by a linear scaling of the frequency axis by a scale-factor

of 2. Compare Figs. 6 and 3. The quarter-wave trans-

former with the same n and Vi as the half-wave filter

is herein called its prototype circuit.

In the case of the half-wave filter, R is the maximum

VSWR, which is no longer the output-to-input im-

pedance ratio, as for the quarter-wave transformer, but

may generally be defined as the product of the junction

VSWR’S :

R = Flt’z . V,,+l. (25)

This definition applies to both the quarter-wave trans-

former and the half-wave filter, as well as to filters whose

prototype circuits they are. (In the latter case, the V,

are the individual discontinuity VSWR’S. )

The equations corresponding to (6)–(18) will now be

restated, wherever they differ, for the half-wave filter.

For the maximally flat half-wave filter of n sections

(R – 1X c.in2. # = g. sin’n 0’&=—
4R

> (26)

where

%’ =+=20 (27)
9

instead of (7), so that 0’= ~ (instead of O= 7r/2) at band

center. The 3-db bandwidth of the maximally flat half-

wave filter is

Wh, 3 db = +~~, 3db (28)

I I

I I

i !

0 I/2 , ! I,Z 2

NORMALIZED FREOUENCY F.OR. NORMALIZED RECIPROCAL GUIDE WAVELENGTH kgo{hg

(b)

Fig. 6—Half-wave filter characteristics. (a) Maximally
flat. (b) Chebyshe}-.

and the bandwidth between the points of x-db attenu~-

tion is

~h,z db = +Wg,. db (29)

which can be obtained from (9) and (10).

For the Chebyshev half-wave filter

(R – 1)2 Z’n’(sin O’/pO)

&=—
——

4R ?
Tn’(1/LLo) ( (30)

= 8, T.2(sin fY/po), )

where

“=’in(7)=sin(3(31)

‘~he quantities 8., 8,, and the maximum transducer

loss ratio are still given by (8), (13), and (14). For

maximally flat half-wave filters, the graph of Fig. 4 can

again be used, but with the right-hand scale.

The lumped-constant low-pas prototype filter graphs

[21 ], [22] may again be used for both the maximally

flat and Chebyshev half-wave filters by substituting

Wf sin 0’— (32)
w 1’ #o
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for (15), where NO is given by (31).

Eq. (16) and Table I still apply, using (24) to convert

between W, and wh.

E.xanzple z: Find R for a half-wave filter of six sec-

tions having a Chebl-shev fractional bandw-idth of 60

per cent with a pass-band ripple of 1 db.

Here, w~, =O.6, or WI=l.2. From (13),

antilog (0.1) – 1 = ~G1)’ 1 (33)
4R — T6’(1/#(1)

and from Table 1, for ZVg= 1.2,

L259-l=(R-1)2~.
4R 817

Hence, R= 850.

IV. EXACT CHEBYSHE~- ANI) N’fAXIMALI.Y FLAT

SOLUTIONS FOR LTP TO FOUR SECTIONS

Enough exact solutions will be presented to permit

the solution of all intermediate cases by interpolation

for Chebyshev and maximally flat transformers and

filters having up to four sections.

The solutions were obtained from Collin’s formulas

[4]. With the notation of Fig. 1, they can be reduced to

the expressions given below. The equations are first

given for maximally flat transformers and then for

Chebyshev transformers.

Maximally Flat Transformers fo~ n =2, 3, and 4

VI = R1/4

Vz = R1/2 }
(34)

74=3 2R112 R )
VI* + 2R112V1 – — —=0

VI – V12
I

(35)

V2 = R112/Vl I
)

where

V3 = R1/4/Al’ \
(36)

I

(+-‘“)=‘G; :)1
Chebyshev Transformers for n =2, 3, and 4

~ = (R – l)po’ ‘

2(2 – po’)

n=.3

;2=4

1= {l/[ B+(B+&)’’’])’”

where

1 – l/R + (1 – l/R)’

[

1-1/2
.1 ‘ = —— +—

2tlt2 4t12t,* R_

.4 ‘( -)B=;—
.1+1

“[(’]+’’)(A2-+J-24’‘;RI1
and

2 @
tI= —_———

(<2 + 1)IAJ2– 1

2@
t~ =

(<2 – I)po’ – 1’

(39)

A difference between typical quarter-wave trans-

formers, and half-wave filters suitable for use as proto-

types for microwave filters, is that, for the former, R. is

relatively small (usually less than 100) and only the

pass-band performance is of interest; for the latter, X! is

relatively large, and the performance in both pass band

and stop band is important. A set of tables for n =2, 3,

and 4, and for R from 1 to 100 has already been given

in [6] (there they cover ZVr = O to 1.2; they are extended

to ZVQ=2.0 in [1]).

The solutions of (34)–(39) for larger values of R are

presented here in another set of tables (Tables II to V).

They give the values of I’Z and T’J for n =2, 3, and 4.

The remaining values of ~’ are obtained from the sym-

metry relations

(where the Z, are normalized so that Zo = 1), or

vi = V+-i (41)

or

and PO is given by (12). J

Also

V,v, . . . Vn+, = R (43)
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TABLE II

V~ FORTWO-SECTION QUARTER-WAVE TRANSFORMERS

f) 1

3 1622
3.1070
2.9446
?.6872
2.3592
2.0000
1.6569
1.3708
1.1635
1.0405
1.0000

3 7

*
80.6742
19.9434

8.70.36
-! 7888
3.0000
2.0557
1.5192
1,~111

1.0502
1 0000

5 6

*

80.2075
19.9363
8.7030
4.7887
3.0000
2.0557
1 5192
1.2111
1.0502
1.0000

8 9 10

o
02

0.4
0.6
0.8

*
80.7215
19.9441

8.7037
4.7889
3.0000
2.0.557
1 5192
1,2111
1 0502
1.0000

1.0
1.0
1.0
1.0
1,0
1.0
1.0
1.0
1.0
1.0
1.0

! 0.0000
9.4056
7.8214
5.8168
4.0455
2.7937
1.9939
1.5000
J .2055
1.0491
1.0000

31.6227
26.0349
15.2942

8.1357
4.6882
2.9763
2.0491
1.5172
1.2105

1.0500
1.0000

00.0000
55.6931
19.2101

8.6395
4.7783
2.9976
2.0550
1.5190
1.2110
1.0501
1.0000

16.2278
76.0577
19.8657

8.6971
4.7878
2.9997
2 .0S56
1.5192
1.2111

1.0502
1.0000

+
80.7263
19. 9-W

8.7037
4 7889
3.0000
2.05.57
1.519’2
1,~111

1.0502
1.0000

*
80.7267
19.9443

8.7037
4.7889
3.0000
2.0557
1.5192
1,~11~

1.0502
1 0000

80. ~267
19.9443

8.7037
4.7889
3.0000
2.0557
1.5192
1.211~
1.0502
1.0000

1.0
1.2
1.4
1.6
1.8
2.0

TABI.E III

VZ FOR THRZE-SECTJON QUARTER-WAVE TRANSFORMERS

1 1
~

.5.424
5.337
5. 06-!
4.5885
3.9083
3.0919
2.3085
1.702?
1,2995

1.0731
1.0000

mo 1 3 4 95 6 7 8

0
0.2

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

2.358
2.344
2?.300
2.222
2.103
1.9344
1.7158
1 4647
1,2269

12.1’!
11.68
10.30

8.1080
5.5671
3.6649
2.4686
1.7428
1.3089
1.0746
1.0000

26.66
24.46
18.10
10. 66J4

6.1014
3.7630
2.4884
1 7472
1.3099
1.0747
1 0000

.57.99
47.69
24.4154
11.3276

6.1728
3.7736
2.4904
1.7477
1.3100
1.0478
1.0000

125

79
Z6

11
6
3
2
1

.50
,82

.1709

.4081
1802

.7747

.4906

.7477

.3101

270.94
101.7501

26.3912

584.31
106.8067

*
07.3998
26.4161
11.4.172

6.1810
3.7748
2.4907
1.7477
1.3101
1.0748
1 0000

*
07.4610
26.4163
11.4173

6.1810
3.7748
2.4907
1.7477
1.3101
1.0748
~ .0000

07 .;679
26.4164
11.4173

6.1810
3.7748
2.4907
1.7477
1.3101
1.0748
1.0000

0.+
0.6
0.8
1.0
1.2
1.4
1.6
1.8

26.4138
11.4171

6.1810
3.7748
2.4907
1.7477
1.3101

11.4163
6.1809
3.7748
2.4907
1.7477
1.31011.0

1.0
1.0

1
1
1

1.0596
1.0000

.0748

.0000 11.0748
1.0000 ~

1.0748
1.00002.0

TABLE IV

V2 FOR FOUR-SECTION QUARTER-W7AVE TRMSS~ORNr~RS

a

14;1604
28,1877
12.2682

6.6982
4.1231
2.7298
1.9016
1.3906
1.0980
1.0000

3 4

\R Log
,.

\w~

o 1 ~

3.1622
3.1616
3.1524
3.1107
2.9928
2.’?392
2,3157
1.8065
1.3725
1.0956
t .0000

5 6 7 I 8 9 10

0
0.2
0.4
0.6
0.8
1.0
1.2

————.;——.—
56.23-!1 ‘loo .0000
52.9321 82.9105
27.3837 28.0996
12.2543 12.2667

6.6975 6.6981

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

1.7782
1.7781
1.7766
1.7698
1.7503
1.705’4
1.6172
1.4676
1.2645

1 0768
1 0000

5,6234
5.6200
5.5677
5.3364
4,7320

10.0000
9.9808
9.6904
8.4944
6.1880
4.0665
7,72z4

1.900’4
1.3904
1.9080
1.0000

17.7927
17.675’2
16.1089
11.2447

6.6331
4.1171
~ 7~9(J

1.9014
1.3905
1.0980
1.0000

31.6227
31.0220
23.4997
12.1344

6.6915
41z25

2.7297
1.9016
1.3906
1.0980
1.0000

177.8279
106.5498
28.1787
12.2680

6.6982
4.1231
2,7298

1.9016
1.3906
1.0980
1 0000

{16.2277
l;::;::;

12.2681
6.6982
4.1231
2.7298
1.9016
1.3906
1.0980
1.0000

3.7126
2.6617
1.8903
1.3886
1.0978
1.0000

4.1230 4.1230

2,7298 2.7298
1.9016 1.9016
1.3906 1.3906
1.0980 1.0980
1.0000 1 0000

}::
1.8
2,0

TABLE V

VS FOR FOUR-SECTION QUARTER-WAVE TRANSFORMERS

‘\\ L;

\
‘\\

Wq \

o

1.0

:::
1.0
1.0
1.0
1..0
1.0
1.0
1.0
1.0

1

-.—

2.3448
~,3~fjj
2,2728

‘2.1853
2,0664
1.9169
1.7347
1.5163
1 2767
1.0777
1 0000

I
?, 8 93 -1 5 6 10

——l. — ——
32.4190 238.047~- 4?5 .9232
85.7685 114.9996 132,4555
33,0054. 33.4806 33,5323

l;::;;; l;:;:;; 14 3376
7 6380

4.5615 4.561.5 4.5615
2.9206 2.9206 2.9206
1.9700 1.9700 1.9700
1.4064 1.4064 1.4064
1.0992 1.0992 1.0992
1.0000 1.0000 1.0000

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

5.2063
5.1045
4.8133
4.3689
3.8146
3.1842
‘2.51OI
1,8739
1.3880
1.0967
1.0000

10.7833
10.3536

9.1941
7.6018
5.8599
4.1904
2,8558
1.9587
1.4045
1.0989
1.0000

21.1024
19.5265
15.6771
11.1871

7.2224
4.5121
‘2.9136
1.9688
1.4062
1.0991
1.0000

39.7366
34.4781
23.5245
13.,5788

7..5865
4.5564
2.9199
1.9699
1.4064
1.0992
1.0000

73.0562
56.7950
30.2006
14.2120

7.6326
4.5610
2.92o5
1.9700
1.4064
1.0992
1.0000

’60.0403
36.7239
33.5375
14.3377

7.6380
4.5615
2.9206
1.9700
1.4064
1.0992
1.0000

37:7307
33.5382
14.3378

7.6380
4.5615
2,9206

1.9700
1.4064
1.0992
1.0000

—
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which, for even n, reduces to

(V,V2. ~ ~ V,, /2) ’W(,7, m+1 = R (44)

and for odd n, reduces to

( V,V, . . V(n+,,,,)’ = R. (45)

Equations (40) to (45) hold for all values of’ n.

Tables II to 1’ give the step VSMTR’S for R from 10

to ~ in multipIes of 10. lNote that for Chebyshev trans-

formers 1’,, V,, . ., [’~ and T’I/ (R) ‘1’= 17,,+1/(R)”

tend toward finite limits as R tends toward infinity, as

can be seen from (34)–(39) for n up to 4, by letting R

tend toward infinity. (For limiting values as R tends

toward infinity and n >4, see Section 1.X.) The tables

give fractional bandwidths, zur, from O to 2.00 in steps

of 0.20. ~~he greatest possible bandwidth is w~ = 2.00,

by definition, as can be seen from (l). ]

When interpolating, it is generally sufficient to use

only the two nearest values of T’ or Z. In that case, a

linear interpolation on a log T- or log Z against log R

scale is preferable. Such interpolations, using only first

differences, are most accurate for small R and for large

R, imd are least accurate in the neighborhoorf

‘2 2(,,–1)

()RN—.
w g

(M)

In this region, second or higher order cliff erences may

be used (or a graphical interpolation may be more con-

\’enient) to achieve greater accuracy.

Example 3: Find the step VSIVR’S T-l, Tzl, T“S, and

Irl for a three-section quarter-wave transformer of

80-per cent bandwidth and R = 200. .LMSO, find the maxi-

mum pass-band 1RM7R.

Here, n=3 and w,, =O.8. For R= 100, from Table III,

V, = 3.9083

.“. log 1“, = 0.5920.

For R = 1000,

l’, = 5.5671

.“. log T’, = 0.7456.

Now, for R = 200,

log R = 2.301.

Interpolating linearly,

log Vz = 0..5920 + 0.301(0.7156 – 0.5920)

= 0.6382

. . Vz = 4.347 = V3 also.

From (43) or (45),

The maximum pass-band l~SWR, T“,, is found from (8),

(13), and Table 1, which give 8, =0.23, and then (18)

determines the maxinlum pass-band 1’SWR, T’, = 2.5.

V. EXACT lb’IAXIMALLY FLAT SOLUTIONs FCII< Ur TO

EIGHT SECTIONS

Enough exact solutions will be presented to permit

the solution of all intermediate cases by interpolation,

for maximally flat transformers with up to eight sec-

tions.

The solutions were obtained by Riblet’s method. This

is a tedious procedure to carry out numerically; it re-

quires high accuracy, especially for large values of R.

In the limit as R becomes very large, approximate for-

mulas adapted from Cohn’s work on direct-coupled

cavity filters [2] become quite accurate, and become

exact in the limit, as R tends to infinity. This will be

summarized in Section VIII. For our present purposes, it

is sufficient to point out that, for maximally flat trans-

formers, the ratios

tend to finite limits as R tends to infinity. (See Section

lx.)

Table VI gives the impedances ZI to Z, (Fig. 2) of

maximally flat quarter-wave transformers of 5, 6, 7, and

8 sections for values of R Up to 100. The impedances, of

Iuaximally flat transformers of 2, 3, and 4 sections were

idready given in Tables II to V (case of Wr = O) and in

[6]. The remaining impedances not given in these tables

are determined from (40).

Table \’I I gives the A ~ defined in (47) for maxirna.ll~-

tlat transformers of from 3 to S sections for values o [ R

from 1 to ~ in multiples of 10. The il ~change relatively

little over the infinite range of R, thus permitting very

accurate interpolation. The T7i are then obtained from

(47), (41) and (43). The case n = 2 is not tabulated,

since the formulas in (34) are so simpIe.

VI. APPKOXIM.ITE DESIGN WHEN R 1s SMALL

Exact numerical Chebyshev solutions for n >4, cor-

responding to the maximally flat solutions up to n = 8

in Section V, have not yet been computed. When the

output-to-input impedance ratio i? approaches unity,

the reflection coefficients of the impedance steps ap-

proach zero, and a first-order theory is adequate. The

first-order theory assumes that each discontinuity

(impedance step) sets up a reflected wave of small am-

plitude, and that these reflected waves pass through the

other small discontinuities without setting up fllrther

seconci-orcler reflections. This theory holds for ‘tsrnal]

R“ as defined b~

(48)

;tncl can be useful e~’en when R approaches (2/w g)’, PaI--

ti rularly for large bandwidths.
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TABLE VI

IMPEDANCES OF MAXIMALLY FLAT TRANSFORMERS

~=(j

z,

1.04540
1.07904
1.10608
1.12884
1.14861
1.16613
1.18191
1.19631
1.22186
1.24413
1,26395

1.28186
1.29822
1.36450
1.41497
1.45628
1.49152
1.52243
1.55006
1.57510
1.59807
1.63911
1.67513
1.70736
1.73661
1.76343

n=7

z,

~=g

z,z, z, z,

1.14960
1.26929
1.37082
1.45995
1.53996
1.61292
1.68026
1.74297
1.85731
1.96010
2.05396
2.14066
2.22148
2.56378
2.84017
3.07621
3.28448
3.47223
3.64407
3.80311
3.95162
4.22331
4.46845
4.69297
4.90095
5.09522

—
z,

—.
1.5
2.0

;:;
3.5
4.0
4.5
5.0
6.0
7.0
8.0
9.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
60.0
70.0
80.0
90.0

100.0

1.01277
1.02201
1.02931
1.03539
1.04061
1.04521
1.04932
1.05305
1.05962
1.06530
1.07032
1.07482
1.07892
1.09531
1.10760
1.11753
1.12592
1.13322
1.13969
1.14552
1.15084
1.16027
1.16847
1.17575
1.18230
1.18828

1.07904
1.13908
1.18816
1.23002
1.26672
1.29954
1.32931
1.35663
1.40549
1.44845
1.48696
1.52196
1.55413
1.68600
1.78804
1.87251
1.94524
2.00950
2.06729
2.12000
2.16856
2.25588
2.33312
2.40267
2.46613
2.52464

1.00636
1.01096
1.01458
1.01759
1.02018
1.02246
1.02450
1.02635
1.02961
1.03243
1.03493
1.03717
1.03921
1.04740
1.05356
1.05855
1.06277
1.06646
1.06973
1.07268
1.07538
1.08017
1.08434
1.08805
1.09139
1.09444

1.00318
1.00547
1.00727
1.00878
1.01007
1.01121
1.01223
1.01315
1.01479
1.01620
1.01746
1.01859
1.01962
1.02375
1.02688
1.02942
1.03158
1.03347
1.03515
1.03667
1.03805
1.04052
1.04268
1.00460
1.04634
1.04793

1.02570
1.04448
1.05944
1.07195
1.08275
1.09229
1.10085
1.10863
1.12240
1.13436
1.14496
1.15451
1.16322
1.19830
1.22484
1.24645
1.26482
1.28087
1.29518
1.30812
1.31996
1.34106
1.35951
1.37597
1.39087
1.40450

1.09628
1.17039
1.23157
1.28415
1.33055
1.37227
1.41030
1.44534
1.50837
1.56414
1.61440
1.66032
1.70270
1.87818
2.01581
2.13089
2.23080
2.31965
2.40004
2.47372
2.54192
2.66530
2.77519
2.87473
2.96605
3.05064

1.00158
1.00273
1.00363
1.00438
1.00503
1.00560
1.00611
1.00658
1.00740
1.00812
1.00875
1.00932
1.00984
1.01194
1.01354
1.01484
1.01594
1.01692
1.01778
1.01857
1.01928
1.02056
1.02168
1.02269
1.02359
1.02442

1.01438
1.02481
1.03307
1.03997
1.04590
1.05114
1.05583
1.06009
1.06762
1.074’14
1.07992
1.08513
1.08987
1.10895
1.12335
1.13507
1.14502
1.15371
1.16146
1.16845
1.17485
1.18624
1.19620
1.20507
1.21310
1.22043

1.06041
1.10571
1.14243
1.17355
1.20071
1.22490
1.24678
1.26681
1.30252
1.33381
1.36177
1.38714
1.41041
1.50543
1.57860
1.63889
1.69087
1.73661
1.77770
1.81513
1.84958
1.91145
1.96609
2.01523
2.06003
2.10129

1.15872
1.28658
1.39558
1.49162
1.57813
1.65722
1.73039
1.79870
1.92356
2.03617
2.13926
2.23474
2.32393
2.70350
3.01198
3.27666
3.51111
3.72308
3.91762
4.09813
&.26701
4.57684
4.85724
5.11474
5.35379
5.57761

TABLE VII

A; OF MAXIMALLY FLAT TRANSFORMERS

(

A, = A.+~ = vJR1t2n

A, = V./R’In, when i # 1, n + 1)

~=7

A,

1.0000
0.8210
0.6941
0.6110
0.5578
0.5238
0.5016
0.4871
0.4773
0.4707
0.4661
0.4630
0.4607
0.4553

L~g

o

:
3
4
5
6
7
8
9

10
11
12
CJ

AI A,

1.0000 1.0000
0.8744 0.8093
0.7682 0.6699
0.6803 0.5736
0.6090 0.5084
0.5519 0.4645
0.5069 0.4348
0.4717 0.4144
0.4444 0.4003
0.4234 0.3904
0.4074 0.3834
0.3952 0.3784
0.3860 0.3747
0.3578 0.3646

A,

1.0000
0.9704
0.9682
0.9966
1.0468
1.1088
1.1745
1.2384
1.2969
1.3481
1.3914
1.4270
1.4557
1.5538

A,A, A,

1.0000
0.9135
0.8557
0.8239
0.8080
0.8004
0.7968
0.7951
0.7943

—
—
—

0.7937
—_

1.0000
0.8708
0.7793
0.7221
0.6883
0.6689
0.6579
0.6516
0.6481
0.6461
0.6450

—

O .;36

1.0000
0.8570
0.7497
0.6755
0.6263
0.5943
0.5738
0.5607
0.5523
0.5471
0.5437
0.5416
0.5403
0.5380

1.0000
0.9088
0.8458
0.8084
0.7873
0.7753
0.7684
0.7643
0.7618
0.7603
0.7594
0.7588
0.7584
0.7579

1.0000
0.8577
0.7456
0.6619
0.6013
0.5582

1.0000
0.8510
0.7478
0.6837
0.6451
0.6217
0.6073
0.5983
0.5924
0.5886
0.5861
0.5845
0.5833
0.5810

1.0000
1.1658
1.3411
1.5107
1.6629
1.7911
1.8934
1.9717
2.0296
2.0716
2.1013
2.1222
2.1366
2.1684

1.0000
0.8649
0.7541
0.6664
0.5987
0.5473
0.5087
0.4801
0.4590
0.4436
0.4324
0.4242
0.4183
0.4031

1.0000
1.0534
1.1250
1.2147
1.3131
1.4103
1.4992
1.5760
1.6394
1.6900
1.7293
1.7593
1.7817
1.8433

1.0000
1.2355
1.4926
1.7432
1.9665
2.1524
2.2997
2.4125
2.4976
2.5610
2.6078
2.6423
2.6681
2.7430

0.5281
0.5071
0.4926
0.4827
0.4758
0.4712
0.4680
0.4612

* For 72=4, AZ=l.0000.

Denote the reflection coefficients of an n-section lowing ratio formulas relate the reflection coefficients

transformer or filter by

I’;, where i=l,2,. ... n+1

to give a Chebyshev response of bandwidth, Wg. Let

upton=s.

For 72=2,

rl:rz=l:2cl. (51)

For n=3,

r1:rz=l:36Z. (52)

For n =4,

r1:T2:rs =l:4~J:2d(2+c’). (53)

For n=5,

rl:r,:r, =l:561:5d(l+cq. (54)

()n’wq
C=cos —.

4
(49)

The quantity c is related to PO of (12) by

C2 + 1.Lo2= 1. (50)

Then, for n-section Chebyshev transformers, the fol-
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TABLE VIII

TABLE OF I’,/rl

?~-6Band- W=2
width,

wq i=z

)1 =3

~=j

3.0000
2.9266
2 7135
2.3817
1.9635
1.5000
1.0365
0.6183
0.2865
0.0734
0

——
?1=8

—
i=l ‘ =3 i =4 ;=5

8,0000 28.0000 56.0000 70.0000
7, 80.!2 26.8373 53.1111 66.1559
?.2361 23..5983 .15 2566 55.7879
6.3511 18.9564 34.5254 41.84.39

4.0000
5.2361 13,8037 23.4303 27.7339

9.0000 14.0000 16.l~!50
2. ?639 .5.1512 7.2434 8.0?93
1.6489 2.498S 3.1483 3.3919
0,7639 0.9163 1 .069? 1.1133
0.1958 0, ~(j7a 0.2152 0.2177
0 0 0 0

?E =5

~=~ ‘ =3

5.0000 10.000:
4.8776 9.6359
4.5225 8,6132
3.9695 7.1208
3.2725 5.4144
2.5000 3.7500
1.7275 2.3243
1.0305 1.2429
0.4775 0.5231
0.122’4 0.1254
0 0

>2=7f2=4

i=z

4 0000
3.9021
3 6180
3.1756
2.6180
2.0000
1.3820
0.8244
0.3820
0.0979
0

0.0 2.0000
0.2 1.9511
0.4 1.8090
0.6 1.587S
0.8 1.3090
1.0 1.0000
1.2 0.6910
1.4 0 4122
1.6 0.1910
1.8 0.0489
2.0 0

21.0000
20,1519
17.7855
14.3s10
10.5789
7.0000
4 0895
2 0375
0.7961
0.1797
0

1.4428
0.6684
0.1713
0

2 3961
0.8660
0.1840
0

—

For n =6, videcl that R is ‘~small” as defined by (48). (Compare

end of Section 1.X. )
1’1:17,: I’,: I’,= l:6c2:3c’(2+3#) :2c’(3+6c’+~’). (55) E.twmple 4: Design a six-section quarter-wave trans-

former of 40-per cent bandwidth for an impedance

ratio of R = 10. [This transformer will have a VSWR

less than 1.005 in the pass band, from (8) and (18) and

Table I.]

Here (2/2vg)’L/z = 125, which is appreciably greater

than R = 10. Therefore, we can proceed by the first-

order theory. From Table VIII,

For n=7,

rl:r,:r,: r4=l:76’: T~’(1+26’) :76~(1+36’+6~). (56)

For n=8.

r,:r,:r,: r4:r, =l:8d:4#(2+5d) :8 Nl+4d+2d)

:2 CZ(4+18C2+ 12 C4+C’). (57) log Vl:log V,:log V,:log V, = 1:5.4270:12.7903:16.7247

Table 1’111 tabulates the I’L/I’l for all fractional band-

widths in steps of 20 per cent in Wg, for transformers of

up to eight sections. The 17’s are obtained from the

appropriate one of the above equations, or from Table

VIII together with (42) and the specified value of R.

(See Example 4.) When zvg = O (maximally flat case),

the r’s reduce to the binomial coefficients. (.1 general

formula for any n will be given below.)

log v] log F, 1
—. . — — —— = 0.01813.

‘og R ~ log v, 55”1593
,=1

Since log R = log 10=1,

“ ITI = V7 = antilog (0.01813). . = 1.0426

[’, = ~ti = antilog (5.4270 X 0.01813) = 1.254

1’3 = l’s = antilog (12.7903 X 0.01813) = 1.705
Range of JTalidity of Fivst-O~de~ Theoyy

For a transformer of given bandwidth, as R increases

from unity on up, the ri all increase at the same rate

according to the first-order theory, keeping the ratios

1’, /1’1 constant. Eventually one of the I’, would exceed

unity, resulting in a physically impossible situation,

and showing that the first-order theory has been

pushed too far. To extend the range of validity of the

first-order theory, it has been found advantageous to

substitute log T7, for T7i. This substitution [23], which

appears to be due to W. Ikr. Hansen [3], might be ex-

pected to work better, since, first, log T’, will CIO just

as well as I’, when the T7, are small compared to unity,

as then

and

V4 = antilog (16.7247 X 0.01813) = 2.010.

Hence,

ZI = VI = 1.0426

Z, = V,Z, = 1.308

Z, = V,Z, = 2.228

.Z4 = VIZS = 4.+85

Z, = V5Z, = 7.65

Z, = V6ZJ = 9.60

R = Z7 = V7Z6 = 10.00.(58)

= constant X I’Lj
Relation to Dolph - Chebyshev .4 ntenna .1 Yrays

and, second, log T’, can increase indefinitely with in-

creasing log R and still be physically realizable.

The first-order theory generally gives goocl results in

the pass band when log 1“, is substituted for r,, pro-

\fi7hen R is snlall, nulnerical solutions of certain ca~e~

up to n = 39 may be obtained through the use of existing

antenna tables. The first-order Chebyshev transformer

problem is nmthematical~y the same as Dolph’s solu-
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TABLE IX

TRANSFORMER-ARRAY CORRESPONDENCES

Chebyshev Transformer

First-order theory
Synchronous tuning
Frequency
Transformer length
Pass band
Stop band
Reflection coefficient
Number of steps (wi-1)
JII(?Z, WQ)
10 Ioglo M
log v,

Dolph-Chebyshe\, Arra~-
—.—— —.

Optical diffraction theory
Uniform phase (or linear phase taper)
Angle in space
Array length
Side-lobe region
Main lobe
Radiation field
~Tumber of eLemell&

Side-lobe ratio
Side-lobe level in db
Element currents, Ii

tion [24] of the linear array, and the correspondences

shown in Table 1.X may be set up.

The calculation of transformers from tables of graphs

or array solutions is best illustrated by an example.

Example 5: Design a transformer of impedance ratio

R= 5 to have a maximum VSWR, V,, of less than 1.02

over a 140-per cent bandwidth (w, = 1.4).

It is first necessary to determine the minimum num-

ber of sections. This is easly done as in Example 1,

using Table I, and is determined to be n = 11.

Applying the test of (48),

‘2 n/2

(-)
= 50,

Wa

whereas R is only 5, and so we may expect the first-

order theory to furnish an accurate design.

The most extensive tables of array solutions are con-

tained in [25]. (Some additional tables are given in

[26].) We first work out M from (8), (18), and (16),

and find M= 8000. Hence the side-lobe level is

10 loglo M = 39.0 db.

From Table II in [25], the currents of an n+ 1 = 12 ele-

ment array of side-lobe level 39 db are respectively

proportional to 3.249, 6.894, 12.21, 18.00, 22.96, 25.82,

25.82, 22.96, 18.00, 12.21, 6.894, and 3.249. Their sum is

178.266. Since the currents are to be proportional to

log ~’,, and since R =5, log R= 0.69897, we multiply

these currents by 0.69897/178.266= 0.003921 to obtain

the log Vi. Taking antilogarithms yields the Vi and,

finally, multiplying yields the Z,. [Compare Ex. 4.]

Thus 20 through R are respectively found to be 1.0,

1.0298, 1.09585, 1.2236, 1.4395, 1.7709, 2.2360, 2.8233,

3.4735, 4.0861, 4.5626, 4.8552, and 5.0000. The re-

sponse of this transformer is plotted in Fig. 7, and is

found to satisfy the specifications almost perfectly.

In antenna theory, one is usually not interested in

side-lobe ratios in excess of 40 db; this is as far as the

antenna tables take us. Only fairly large bandwidths

can be calculated with this 40-db limit. For example,

Table I shows that for n = 2 this limits us to w,> O. 18;

,7

,.‘[

,z–

,,L

,0
0

., . . ...2., ,.,0”,,,,,

Fig. 7—.kalyzed performance of transformer
designed in Example 5.

for TZ=4, to WQ>0.67; for n=~, to WQ>I.21; and for

n = 12, to Wq >1.52. A general formula for all cases has

been given by G. J. Van der Maas [27] which becomes,

when adapted to the transformer,

r, 9’2 ~–z ?Z+l —i

x(
)( )

i—2

rl –
6’(’+” (59)

?L+l —ir=o r+l ‘r

()for 2 <i< (n/2)+1, where c is given by (49), and a

are the binomial coefficients b

()a
a!

b= b!(a – b)! “
(60)

VII. ApprOXimate DESIGN FOR UP TO

MODERATELY LARGE R

Modijied First- OYder Theory

In Section VI, a first-order theory was presented

which held for “small” values of R as defined by (48). In

Section VIII, there will be presented formulas that

hold for “large” values of R as defined by (73). This

leaves an intermediate region without explicit formulas.

Since exact numerical solutions for maximally flat trans-

formers of up to eight sections have been tabulated

(Tables VI and VII), these might be used in conjunc-

tion with either the ‘(small R“ or the “large R“ theories

to extend the one upward or the other downward in R,

and so obtain more accurate solutions for Chebyshev
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‘fz=3Band-
width,

wg

?1=2
—

i=l /=3

1.00000
0.99380
0.97491
0.94234
0.89430
0.82758
; ; ‘7;7;:

0.41835
0.16079
0

—

i-li=l

1.00000
1.01237
1.05014
1.11488
1.20882
1.33333

~=3

1.00000
~

1.00000
1.02501 0.99992

1.00000
0.99176

1.00000
1.03135
1.13188
1.32337
1.65171
2,20689
3.16718
4.88788
7.99760

12.82256
16.0

1.00000
1.00611

0
(),’2
0,4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

1.00000
0.98762
0.94985
0.88511
0.79117
0.66666

1.00000 1.00000
0.99376
0.97428
0.93905
0.88341
0.80000
0.67861
0.50942
0 29692
0.09117
0

]

\
~=1

1.01869
1.07715
1.18283
1 34975
1.60000
1.96415
2.47172
3.10921
3.72647

1 10418 0.99873
1.25124 0.99336
1.49381 0.97770
1.88235 0.94117
2.50.599 0.86571
3.51015 f), 72344

5.05657 0,48290
6.97198 0.17063

0.96695
0.92510
0.86512
0.78431
0.67690
0.53202
0.33727
0.11515
0

1.02379
1.05062
1.08104
~ 103H
1.094261. +8643

1.65823
1.82565
1.95226

0.51356
0.34176
0.17434
0.04773
0

1.00739
0.76377
0.31389

2.0 4.0 8.0 10 0

~=6

—
)1=7

lvidth, -1
1=2 I 1=3 I ,=4 ~=1 ,=j ,=3 ~=~ ~=:5

—— . —— . — .

1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1.01861 1.00200 0.99381 1.05063 1.02492 1.00701 0.99643 0.99294
1.07581 1.00731 0.97503 1.21921 1.10279 1.02757 0.98531 0.97167
1.17521 1.01374 0.9-1298 1.56565 1.24295 1.05997 0.96526 0.9.3590
1.32138 1.01702 0.89639 2.23202 1.46088 1.10036 0.93387 0.88496
1.51479 1.00986 0.83313 3.54939 1.77469 1.14087 0.88734 0.81762
1,73806 0.97968 0.74941 6.33721 2.18942 1.16586 0.81969 0.731 +.?
1.91834 0.90301 0.63717 12.81069 2.64044 1.14312 0.72021 0.62075
1.83488 0.72848 0.47546 29.51655 2.818’46 0.99755 0.56381 0.4694.3
1.02030 0.3S677 0.21919 74.08908 I .81333 0.54984 0.28471 0.23041

1=1

1,00000 1.00000 1.00000 1.0000
1,01235 0.99748 0.99258 1.0441
1.04946 0.98935 0 97026 1.1893
1 11118 0.97375 0.93268 1.4803

0
(),2
0.4
0.6
0.8
10
1.2
1.4
1.6
1.8
20

—

I 0000(
1,03774
1 16027
1.3996:
1.8260:
2.5858:
3.99301
6.75454

12.45111
’23 25581
.3? o

1,19520 0,94743 0.87911 2.0188
1.29292 0.90505 0.80808 3.0’295
1,37951 0.83778 0.71630 5.0307
1.39211 0.72904 0,59571 9.3071
1,18908 0.54369 0.42589 19.3163
0.568991 0.235961 0.179061 41.6938
0 10 10 1640 0 10 10 ]128.0 10 10 [0 10

transformers with R in this intermediate region. This same for both the Chebyshev transformer and the cor-

responding maximally flat transformer, then (63a) re-

duces to

(log ~) Ch,byshm = ?’ ?(l”~ ~z)maximally flat (63b)
tm~sform.f trims fmmm

The modification to the first-order theory now con-

sists in using the exact log J’, of the maximally flat

transformer where these are known (’Tables 1’1 and

\~II). The y, could be obtained from (63) and Table

VIII, but are tabulated for greater convenience in

Table X. The numbers in the first row of this table are,

by definition, all unity. ‘The application of this table is

illustrated by an example given below.

Range OJ J’alidity ~of the Modi’cd Fi~st-O~de~ Theory

The analyzed performance of a first-order design,

modified as explained above, and illustrated in Example

6, agrees well with the predicted performance, provided

that R satisfies (61) or at least (62). (In this regard,

compare the end of Section I~X. )

As a rough but useful guide, the first-order modifica-

tion of the exact maximally flat design generally gives

good results when the pass-band maximum LTSWIR is

less than or equal to (1 +Wgz), where Wg is the equal-

ripple quarter-wave transformer bandwidth (1). BY

definition, it becomes exact when w,= 0.

Example 6: In Example 1 it was shown that a quarter-

wave transformer of impedance ratio R = 100, fractional

bandwidth, ZVq= 1.00, and maximum pass-band VSWR

idea is applied here to the first-order (fismall R’)) theor~

only, as will be explained. It extends the range of the

first-order theory from the upper limit given by (48)

up to ‘(moderately large” values of R as defined by

and gives acceptable results even LIp to the square of

this limit,

(62)

[Compare (73). ] Of course, when R is less than specified

b~- (4 S), there is no need to go beyond the simpler first-

order theory of Section VI.

The first step in the proposed modification of the

first-order theor>- is to form ratios of the r,, which will

be denoted by -Y,, with the property that

[ ,=1 Jtransformer [ ,=~ ~trmsf’mcr

The y, are functions of n (the same n for both trans-

formers) and w, (the bandwidth of the desired Che-

byshev transformer). The substitution of log TT, for 17,

will again be used, and therefore ~T~ l?~ is replaced by

log R, according to (43). If now we choose R to be the
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of less than 1.15 must have at least six sections (n= 6).

Calculate the normalized line impedances Zi of this

quarter-wave transformer. Predict the maximum pass-

band VSWR, V,. Then, also find the bandwidth wh

and normalized line impedances, Z,f, of the correspond-

ing half-wave filter.

First, check that R is small enough for the trans-

former to be solved by a first-order theory. Using (48),

()
‘2 7L/2

— =23=8,
Wq

(64)

Therefore the unmodified first-order theory would not

be expected to give good results, since R = 100 is con-

siderably greater than 8. Using (61) and (62),

2“

(--)
= 64

Wq

‘2 2n

()

— = 2048
Wq 1

(65)

Therefore the modified first-order theory should work

quite well, akhough we may expect noticeable but not

excessive deviation from the desired performance since

R = 100 is slightly greater than (2/wQ)” = 64.

From Table VI and Fig. 2, or from Table \711 and

(47), it can be seen that a maximally flat transformer

of six sections with R = 100 has

v, = V7 = 1.094 .“. log VI = 0.0391),

V2 = V~ = 1.610 .“. log V, = 0.2068

1
log V, = 0.4612 “

(66)
V, = VS = 2.892 .“.

V, = 3.851 .“. log V, = 0.5856~

The log VSWR’S of the required 100-per cent band-

width transformer are now obtained, according to

(63 b), multiplying the log 17’s in (66) by the appropri-

ate values of ~ in Table IX:

log V, = 0.0391 X 2.586 = 0.1011)

log V, = 0.2068 X 1.293 = 0.2679

log t’, = 0.4612 X 0.905 = 0.4170
(67)

log V, = 0.5856 X 0.808 = 0.4733j

- T’, = V, = 1.262. .

V, = V, = 1.853

)1’, = VK = 2.612
(68)

NTOW this product Vl V2 . . . VT equals 105.4, instead of

100. It is therefore necessary to scale the T’, slightly

downward, so that their product reduces to exactly 100.

The preferred procedure is to reduce T~l and T~7 by a

factor of (100/ 10S.4) Illz while reducing T’?, . . . , V6 by

a factor of (100/105.4) l/d. It can be shown [see Example

8 and (74)] that this type of scaling, where VI and Vn+l

are scaled by the square root of the scaling factor4 for
V,, ..., T~n, has as its principal effect a slight increase

in bandwidth while leaving the pass-band ripple almost

unaffected. Since the approximate designs generally

fall slightly short in bandwidth, while coming very

close to, or even improving on, the specified pass-band

ripple, this method of scaling is preferable. Subtracting

0.0038 from log VI and 0.0076 from the remaining log

l“, in (67) gives the new V,

v, = V7 = 1.251

V, = VC = 1.821
1

1’, = VE, = 2.566

V, = 2.922 1

and for the corresponding normalized

of the quarter-wave transformer (Fig.

Zo .. 1.0

ZI = VI = 1.251
1

22 = ZIV2 = 2.280

23 = Z2?V, = 5.850

Z4 = Z3V4 = 17.10
~

25 = Z*V6 = 4’3.91 ]

ZG = zJVLi = 79.94 ~

R = Z6V7 = 100.00 ]

We note in passing that the product

(69)

line impedances

2),

(70)

of the VSILIR’S

before reduction was 105.4 instead of the specified 100.

If the discrepancy between these two numbers exceeds

about 5 to 10 per cent, the predicted performance will

usually not be realized very closely.

The maximum insertion loss and VSWR in the pass

band predicted from (16) and Table I are

8, = 0.0025,

Therefore, by (18),

v, =

The computed plot of

or 0,011 db

1.106. (71)

V against normalized fre-

quency, f, of this transformer (or against k,O/A, if the

transformer is dispersive) is shown in Fig. 8. The band-

width is 95 per cent (compared to 100 per cent pre-

dicted) for a maximum pass-band VSWR of 1.11.

(Notice that the response has equal ripple heights with

a maximum VSWR of 1.065 over an 86-per cent band-

width. )

~ 1n genera!, if R‘ and R are respectively the trial and desired
impedance ratios, then for an tith-order transformer, the scaling

factor is <’/”j v’R/R’ for V,, V,, . . . V., and t’/2u)v’R/R’ for V, and
V.+h
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The bandwidth UO, of the half-wave filter for a maxi-

mum lSWR of 1.11 will be just half the corresponding

bandwidth of the quarter-wave transformer, namely

47.5 per cent. Its normalized line impedances are (see

Fig. 5):

Zo’ = 1.0 (input)

Z1’ = VI = 1.251 I

Z; = Z1’/Tz, = 0.6865

Z; = Z,’ Vt = 1.764
,’. (72)

Z1’ = Z~/171 = 0.604

Z5’ = z,’ Vb = 1.550

Z~ = Z~/V6 = 0.850

Z; = ZG’ V7 = 1.065 (output),

It should be noticed that the output impedance, Z7’,

of the half-wave filter is also the VSWR of the filter or

transformer at centkr frequency [15] (Fig. 8).

In this example it was not necessary to interpolate

from the tables for the 1’, or the Z,. When R is not

given exactly in the tables, the interpolation procedure

explained at the end of Section IV should be followed.

,, ---,--

[

,6

,5

,.

:
>

)3

,,

II

,00 ~z
.,......,..”........

Fig. 8—.4nalyzed performance of transformer
designed in Example 6.

VIII. APPROXIM~~E DESIGN WHEN R IS L.4RGE

Theory

Riblet’s procedure [5], while mathematically elegant,

and although it holds for all values of R, is computa-

tionally very tedious, and the accuracy required for

large R can lead to difficulties even with a large digital

computer. Collin’s formulas [4] are more convenient

(Section IV) but do not go beyond n =4 (Tables II to

V). Riblet’s procedure has been used to tabulate maxi-

mally flat transformers up to n = 8 (Tables VIII and

IX). General solutions applicable only to “small R“

have been given in Sections VI and VII, and are tabu-

lated in Tables VIII and ~X. In this part, convenient

formulas will be given which become exact only when R

is “large, ” as defined by

R>> 1 “.
() Wq

(73)

These solutions are suitable for most practical jilter

applications (but not for practical transformer applica-

tions).

For “large R“ (or small Wq), stepped impedance trans-

formers and filters may be designed from low-pass,

lumped-constant, prototype filters [2], [28 ], whose

normalized reactive elements are denoted by gi (i= 1,
. . . n). The transformer or filter step VSWR’S are,

obtained from

4 g@l’
vl=vn+l=— —

1- Wq

(Vi large, w, small),

where co]’ is the radian cutoff frequency of the low-pass

prototype and WJgis the quarter-wave transformer frac-

tional bandwidth [given by (1) for Chebyshev trans-

formers and (9) or (1 O) for maximally flat transformers].

Again, the half-wave-filter bandwidth, wk, is equal to

one-half w~ [see (24)].

The V; and 17, are symmetrical about the center in

the sense of (41) and (42), although the g, need not be

similarly related.

With the tables of [28], it is easy to use (73). One

should, however, always verify that the approxi nla-

tions are valid, and this is explained next. Procedures

to be used in borderline cases, and the accuracy to be

expected, will be illustrated by examples.

Range of J’alidity

The criteria given in (48) and (61) are reversed.

The validity of the design formulas given in this part

depends on R being large enough. It is found that the

analyzed performance agrees well with the predicted

performance (after adjusting R, if necessary, as in

Examples 8 and 9) provided that (73) is satisfied; R

should exceed (2/wq)” by preferably a factor of albout

10 or 100 or more (compare end of Section IX). The

ranges of validity for ‘{small R“ and “large R“ overlap

in the region between (62) and (73), where both pro-

cedures hold only indifferently well. (See Example 9.)

For the maximally flat transformer, (73) still applies

fairly well, when Wig, 3db is substituted for w~.

As a rough but useful guide, the formulas of this sec-

tion generally result in the predicted performance in

the pass band when the pass-band maximum VSWR

exceeds about (1 +Wgz). This rule must be considered

indeterminate for the maximally flat case (wa = O),
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when the following rough generalization may be sub-

stituted: The formulas given in this section for nlaxi-

mally flat transformers or filters generally result in the

predicted performance when the maximally flat quarter-

wave transformer 3-db fractional bandwidth, w~, sdb, is

less than about 0.40.5 The half-wave filter fractional

bandwidth, w,, 3db, must of course be less than half of

this, or 0.20.

After the filter has been designed, a good way to

check on whether it is likely to perform as predicted is

to multiply all the VSWR’S, VI V2 . ~ “ 17~+1, and to cOm-

pare this product with R derived from the performance

specifications using Table I and (13). If they agree

within a factor of about 2, then after scaling each 1’ so

that their VSWR product finally equals R, good agree-

ment with the desired performance may be expected.

Three examples will be worked out, illustrating a

narrow-band and a wide-band design, and one case

where (73) is no longer satisfied.

Example i’: Design a half-wave filter of 10-per cent

fractional bandwidth with a VSWR ripple of 1.10, and

with at least 30-db attenuation 10 per cent from center

frequency.

Here wfi=O.l, .“. Wq = 0.2. A VSWR of 1.10 corresponds

to an insertion loss of 0.01 db. From (33) and (31), or

(17) and (12),

pO = sin’~ = sin 9° = 0.1564.

At 10 per cent from center frequency, by (32),

co’ sin 0’ sin 172°
. — = 1.975.

U1’ Po 0.1564

From Fig. 2 of [2], or from [21], pp. 196 and 197, a 5-

section filter would give only 24..5 db at a frequency 10

per cent from band-center, but a six-section filter

will give 35.5 db. Therefore, we must choose n = 6 to

give at least 30-db attenuation 10 per cent from center

frequency.

The output-to-input impedance ratio of a six-section

quarter-wave transformer of 20 per cent fractional

bandwidth and O.01-db ripple is given by Table I and

(13) and yields (with 8,= 0.0023 corresponding to O.O1-

db ripple)

R = 4.08 X 101O. (75)

Thus R exceeds (2/uQ)” by a factor of 4 X 10J, which

by (73) is ample, so that we can proceed with the

design.

From [28 ], for n = 6 and O.01-db ripple (correspond-

5 Larger 3-db fractional bandwidths can be designed accurately
for small n, for example up to about w., ,dl, =0.60 for n =2.

ing to a maximum VSWR of 1. 10), and from (74),

VI=V7= h,98
1

v, = V6 = 43.0 IV,=Vs=92.8 “
(76)

v, = 105.0 J

This yielded the response curve shown in Fig. 9, which

is very close to the design specification in both the pass

and stop bands. The half-wave filter line impedances

are

Zo’ = 1.0 (input) ‘

z; = V“l = 4.98.

Z; = Zj/V, = 0.1158

z; = z,’ v, = 10.74

Z,’ = Z,’/Vl = 0.1023
(77)

Z5’ = Z4’ V5 = 9.50

Z6’ = z5’/v6 = 0.221 “

27’ = Z6’ VT = 1.10 (output),

Note that 27’ = 1.10 is also the VSWR at center fre-

quency (Fig. 10).

Fig. 9—Analyzed performance of half-wave
filter designed in Example 7.

28 1 1 ,,,

,’
24–

/
‘/’’’0”’ “’’’’c””” ‘0’ ‘

,’
~ 20
.
~.

.
: l,— ,

f ,_

(
.—

,0,.,,,2,, FRco”mc,

Fig. 10—Analyzed performance of two half-wave
filters designed in Example 8.
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The corresponding- quarter--wave transformer has a

fractional bandwidth of 20 per cent; its line impedances

are

Zo = 1.0 (input) )

z, = V, = 4.98

22 = 211’, = 2.1-I x 10’

z, = Z2V3 = 1.987 x lo~
< (78)

Z1 = Z~Vi = 2.084 X 106

Zb = Z41’5 = 1.9315 x .10’

Zij = Z~P’G = 8.30 X 10Y

R = Z, = Z,V7 = 4.135 X 10’0 (output) 1

which is within about l+ per cent of R in (75). Therefore,

we would expect an accurate design, which is confirmed

by Fig. 9. The attenuation of 35.5 rlb at j= 1.1 is also

exactly as predicted.

Example 8: It is required to design a half-wave filter

of 60 per cent bandwidth with a 2-db pass-band ripple.

The rejection 10 per cent beyond the band edges shall

be at least 20 db.

Here wl, =O.6, ;. Wq = 1.2. As in the previous example,

it is determined that at least six sections will be re-

quired, and that the rejection 10 per cent beyond the

band edges should then be 22.4 db.

From (13) and Table I it can be seen that, for an

exact design, R would be 1915; whereas (2,1wQ)n is 22.

Thus R exceeds (2/w,)” by a factor of less than 100,

and therefore, by (73), we would expect only a fairly

accurate design with a noticeable deviation from the

specified performance. The step lTSWR’S are found by

(74) to he

J’, = V, = 3.028)

V, = Vlj = 2.91
1 (79)

V8=V5 =3.93 1“

V, = 4.06 1

Their product is 4875, whereas from (13) and Table I,

R should be 1915. The 1’, must therefore be reduced.

.% in Example 6, we shall scale the V, so as to slightly

increase the bandwidth, without affecting the pass-

band ripple. Since from (74) J’1 and lz,,+l are inversely

proportional to 7Yr, whereas the other (n – 1) junction

VSWR’S, namel~ lrj, 1’3, . T’”., are inversely propor-

tional to the square of Wv, reduce 171 and 1“? h~’ a

factor of

(a’”=CH)’12=092’1
and 1’2 through ~’e by a factor of

(%3’”=(%)’6=08’59

(Compare Example 6.) This reduces R from 4875 to

1915. Hence,

V, = P’, = 2,803

V, = ~f, = 2.486

I

V,j = F5 = 3.360

v, = 3.470J

The half-wave filter line impedances

2.’ = 1.0 (input)

2,’ = 2.803

Zz’ = 1.128

Z; = 3.788

Z,’ = 1.092

Z,’ = 3.667

26’ = 1.475

27’ = 4.135 (output)

(80)

are now

(81)

Since the reduction of R, from 4875 to 1915, is a rela-

tively large one, we may expect some measurable dis-

crepancy between the predicted and the analyzed per-

formance. The analyzed performance of Designs (79)

and (80), before and after correction for R, are shown

in Fig. 10. For most practical purposes, the agreenlent

after correction for R is quite acceptable. The band-

width for 2-db insertion loss is 58 per cent instead of

60 per cent; the rejection is exactly as specified.

Discussion: The half-wave filter of Example 7 re-

quired large impedance steps, the largest being 1’, = 105.

It would therefore be impractical to build it as a

stepped-impedance filte_r; it serves, instead, as a proto-

type for a reactance-coupled cavity filter. This is typi-

cal of narrow-band filters. The filter given in the second

example, like many wide-band filters, may be built

clirectly from (80) since the largest impedance step is

1’4 = 3.47 and it could be constructed after making a

correction for junction discontinuity capacitances

[3], [1]. Such a filter would also be a low-pass filter.

(See Fig. 6). lt would have identical pass bands at all

harmonic frequencies, and it would attain its peak

attenuation at one-half the center frequency (as well

as at 1.5, 2.5, etc. , times the center frequency, as shown

in Fig. 6.) The peak attenuation can be calculated from

(8) and (75). In Example 7 the peak attenuation is 100

db, but the impedance steps are too large to realize in

practice. In Example 8 the impedance steps could be

realized, but the peak attenuation is only 27 db. Half-

wave filters are therefore more useful as prototypes for

other filter-types which are easier to realize physically.

If shunt inductances or series capacitances were used

(in place of the impedance steps) to realize the T’i and to

form a direct-coupled-cavity filter, then the attenuation

below the pass band is increased and reaches infinity at
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TABLE XI

THE THREE DESIGNS OF EXAMPLE 9

A—’’Large R“ Approximation.
B—’’Small R“ Approximation.
C-Exact Design.

!

I Design

A B c

v,= v, 1.656 — 1.780 1.936
v,= v, 2.028 2.091 1.988

v, 2.800 2.289 2.140

Fig. 1l—Analyzed performance of three quarter-wave
transformers designed in Example 9.

zero frequency; the attenuation above the pass band is

reduced, as compared with the symmetrical response of

the half-wave filters (Figs. 9 and 10). The derivation of

such filters from the quarter-wave transformer or

half-wave filter prototypes will be presented in a future

paper.

Example 9: This example illustrates a case when

neither the first-order theory (Section VI) nor the

method of this part are accurate, but both may give

usable designs. These are compared to the exact design.

It is required to design the best quarter-wave trans-

former of four sections, with output-to-input imped-

ance ratio R = 31.6, to cover a fractional bandwidth of

120 per cent.

Here n=4 and WQ= 1.2. From (13) and Table I, the

maxilmum VSWR in the pass band is 2.04. Proceeding

as in the previous example, and after reducing the

product VI Vz . . . T’b to 31.6 (this required a relatively

large reduction factor of 4), yields Design A shown in

Table XI. Its computed VSWR is plotted in Fig. 11

(continuous line, Case A).

Since R exceeds (2/w,) n by a factor of only 4 [see

(73) ], the first-order procedure of Section VII may be

more appropriate. This is also indicated by (62), which

is satisfied, although (61) is not. Proceeding as in

Example 6 yields Design B, shown in Table XI and

plotted in Fig. 11 (dash-dot line, Case B).

In this example, the exact design can also be ob-

tained from Tables IV and V, by linear interpolation of

log V against log R. This gives Design C shown in Table

XI and plotted in Fig. 11 (broken line, Case C).

Designs A and B both give less fractional bandwidth

than the 120 per cent asked for, and smaller VSWR

peaks than the 2.04 allowed. The fractional bandwidth

(between V= 2.04 points) of Design A is 110 per cent,

and of Design B is 115 per cent, and only the exact

equal-ripple design, Design C, achieves exactly 120 per

cent. It is rather astonishing that two approximate de-

signs, one based on the prelmise R= 1, and one on

R+ ~ , should agree so well.

IX. ASYMPTOTIC BEHAVIOR AS R TENDS TO INFINITY

Cohn [2] developed formulas for direct-coupled cav-

ity filters with reactive discontinuities. His formulas

become exact only in the limit as the bandwidth tends

to zero. This is not the only restriction. Cohn’s formulas

[2] for transmission-line filters, like our formulas in

(74), hold only when (73) or its equivalent is satisfied.

[Define the V, as the VSWR’S of the reactive discon-

tinuities at center frequency; R is still given by (43); for

w~ in (73), use twice the filter fractional bandwidth in

reciprocal guide wavelength. ] The variation of the 1’,

with bandwidth is correctly given by (74) for small

bandwidths. These formulas can be adapted for design

of both quarter-wave transformers and half-wave filters,

as in (74) and hold even better in this case than when

the discontinuities are reactive. This might be expected

since the line lengths between discontinuities for half-

wave filters become exactly one-half wavelength at

band-center, whereas they are only approximately 180

electrical degrees long in direct-coupled cavity filters.

(See Fig. 14 of [2].)

Using (74) and the formulas [2] for the prototype

element values g~ (i= 1, 2, - . . , n), one can readily de-

duce some interesting and useful results for the V; as R

tends to infinity. One thus obtains, for the junction

VSWR’S of C’hebyshev transformers and filters:

(8 y ‘in(%) sin(?””) ‘
Iim V. = —

R+- moq

()

i—l
sin~ —

(~, Sin(%)s:i?”)
——

(; =2,3,..

()i—l
sin~ —T

n

T

sin —
2?2

( ).

‘i-1
sin —n-

n

n)

. (82)
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n I ~=z ;=J
———

2 0.81056
3 1.08075
4 1.14631 1.38372
5 1.17306 1.44999
6

1
1.18675 I 1.47634

7 1.19474 1.48981
8 1.1998j 1.49773

1.20325
1:

1.50282
1.20568 1.50631

11 1.20747 1.50880
12 1.20882 1.51066
13 I 1.20987 I 1.51207
14 I 1.21070 I 1.51318

()T..kBLE OF ~z lim (v,) FOR SMALL w,
2 R-+cc

[l’, = v.+,-,]

1.51254
1.53668
1.54885
1.55596
1.56052
1.56365
1.56589
1.56757
1.56886

I

1.58636

1

1.59419
1.58789 1.59610

I q:, / I

m —

,0

%

,0

,

.

7

,

5

, 0,

.

3 —

2

, w

, m

‘.3*345 ,,, ,,0, ,,,

‘0% R

Fig. 12— Vz vs log R of four-section transformer for all
fractional bandwidths in steps of 0.20.

The quantity

oZvq 2
?#h2lirn (Vz) = ~ lim (VJ (83)

R+ m R+ cc

is tabulated in Table XII for i= 2, 3, . . , n and for

n=2, 3, . . ., 14.

We notice that for Chebyshev transformers and

filters, the V, (i# 1, n+ 1) tend to finite limits, and

thus I’1 = Vn+l tend to a constant times R1J2. We also

see that

wh’V; <$= 1.62115 (i = 2,3, ~ . , n) (84)

L ‘-
.V5, .=8

16 v4, n.8
:------.——————————Vb, .=7

1.59351
1.59723
1..59975

—

‘EI =’>=_____________‘. n‘ 6
-V3, “=8

K

V3, .=7
14.’ V3, ”=6

V3, ”=5

1.60081

7

08

0
QUARTER-WAVE TRANSFORMER FRACTIONAL BANDWIOTH Wq

Fig 13—Lim~~~(wg/2 )2V, plotted against fractional bandwidth ‘for
trausfm-mers having up to four sectious, and shown for small w@
up to eight sectious.

For maximally flat transformers, the IT, all tend to

infinity with R, but the quantities

v,
.41 = .4,,+1 = —

Rll~n

tend toward finite limits given by

from which we see that

01
~n–1 l/2?t]

VI = Vn+l < —

R

()
‘p–l I/n ‘

V;< —
R Jfor all n, and tends to 16/7r2 only in the limit i-wz/2-+ ~.
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for all n. They tend toward the values on the right-

hand side only in the limit i=n/2~ ~.

To show how a typical 1’, approaches its asymptotic

value, the exact solution for T’z when n = 4 is plotted in

Fig. 12 for all fractional bandwidths w, in steps of 0.20.

It is seen that each curve consists of two almost linear

regions with a sharp knee joining them. In the sloping

region above the origin ((’small R“), the approximations

of Sections VI or VII apply; in the horizontal region

(“large R“), the approximations of Section VIII apply.

These two sets of approximations probably hold as well

as they do because the knee region is so small.

The exact asymptotic values of ~k’ 1’,= (wq/2) 2~’, are

plotted against w, in Fig. 13. If (82) were exact instead

of approximate, then all of the curves would be hori-

zontal straight lines. As it is, (82) gives the correct value

only on the W.= O axis. As the bandwidth increases,

wh2 Iz, departs from the value at w = O slowly at first,

then reaches a minimum, and finally all curves pass

through unity at ZU, = 2 (w~ = 1). The values of (w,/2)’ V,

at Wg= O up to n = 8 are also shown in Fig. 13. They all

lie below the value 16/7r2 = 1.62115, and maybe expected

to exhibit the same sort of general behavior as do the

curves up to n = 4, for which the exact solutions were

obtained from (37) to (39).

The asymptotic values of the ~~, for i =2, 3, . . , n,

and for a given fractional bandwidth, are seen to be

fairly independent of n, on examination of (82), Table

XII, or Fig. 13. It follows that the same is true of

VJV’R = V.+J~~. Thus, as R increases indefinitely,

so do VI and ?7.+1; on the other hand for ‘(small R,)’

1712and TT.+12 are less than the other V, (not squared)

for small and moderately wide fractional bandwidths

(up to about 100 per cent bandwidths, by Table VIII).

If we assume that in the knee region (Fig. 12) V12 = J’.+12

are of the order of the other Vi, then in the knee region

R is of the order of (Tz,)”, for any i# 1, n+l. From (74),

R is therefore inversely proportional to (const. X W,2)’,

and from the previous remarks this constant of propor-

tionality is reasonably independent of n. Using Fig. 12

for example, the constant is very close to the value ~.

This leads to the magnitude formulas of (48), (61), and

(62), and (73), which have been confirmed by numerous

sample solutions.

X. CONCLUSION

The theory of the quarter-wave transformer has been

reviewed and extended, and the major results have been

presented. The distinctions between ideal and nonideal

junctions, homogeneous and inhomogeneous trans-

formers, synchronous and nonsymchronous tuning, have

been brought out explicitly. The concept of half-wave

filters will be found useful in the design of direct-

coupled-cavity filters. Design formulas were presented,

numerical tables were given, methods of numerical cal-

culation were explained, and their use was illustrated

by several examples. Where exact solutions are not

available, two approximate design procedures were

given: one is applicable where R is small enough, and

one where R is large enough. To help in obtaining ac-

curate numerical solutions, the connection between an-

tenna arrays and “small-R” transformers was utilized,

as was the connection between lumped-constant, low-

pass filters and “large-R” transformers.

An additional bibliography lists related topics not

covered in this paper.
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In.Line Waveguide Calorimeter for High.

Power Measurement”

NI. MICHAEL J3RADY~, MEMBER, IRE

Summarg—The static in-line calorimeter measures the temper-

ature rise in the walls of a waveguide caused by the attenuation of

microwave power flowing through the waveguide. It is simple and
inexpensive and can be constructed so that it will fit on waveguide

already existing in a microwave system. The device should be reliable

because it uses no active circuitry. In addition, few mechanical prob-

lems are encountered in its use because the existing waveguide need
not be altered. The theory of the device is developed, and two experi-

mental S-band calorimeters using stainless steel waveguide and re-

sistance-wire bridge temperature indicators are described. The

measured sensitivity and time constant for both units fall within

the experimental error of confirming the theoretically predicted

figures.
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INTRODCTCTION

T HE HIGH-POWER measurement or monitoring

schemes presently available, if not complete ab-

sorption devices, are usually reduced-signal sanl-

pling devices in which a low-power meter is used. In

most low-level measurement schemes, however, the

background noise (ambient temperature fluctuations in

the case of the bolometer power meter) often determines

the ultimate resolution of the device. In a high-power

measurement system, on the other hand, the power level

present most often completely- masks the low-power

background noise. It may then be less desirable to sam-

ple a high-power signal through a directional coupler

and to attenuate the sampled signal until it can be read

with conventional low-power meters than to use a


