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Stepped-Impedance Transformers and Filter Prototypes*

LEO YOUNGTY, SENIOR MEMBER, IRE

Summary—Quarter-wave transformers are widely used to ob-
tain an impedance match within a specified tolerance between two
lines of different characteristic impedances over a specified fre-
quency band. This paper gives design formulas and extensive tables
of designs, most of which were especially derived so that an inte-
grated account could be presented for the first time. Numerous
examples are given. Only homogeneous, synchronous transformers
and filters are included in this paper, but a short bibliography on re-
lated topics is appended.

The theory is also applied to band-pass filters, by showing how
to convert quarter-wave transformers into half-wave filter prototypes.
The theoretical and numerical results presented are applicable to the
design of impedance transformers, direct~coupled cavity filters,
short-line low-pass filters, optical antireflection coatings and inter-
ference filters, acoustical transformers, branch-guide directional
couplers, TEM-mode coupled-transmission-line directional couplers,
and other circuits. These applications have been or will be dealt with
in separate papers; this paper gives the basic theory and some of the
numerical data required for these applications.

I. INTRODUCTION

HE OBJECTIVE of this paper! is to extend and
Tconsohdate the theory of the quarter-wave trans-

former, with two applications in mind: the first
application is as an impedance-matching device or,
literally, transformer; the second is as a prototype cir-
cuit, which shall serve as the basis for the design of
various filters and directional couplers.

* Received April 9, 1962. This work was sponsored by the U, S.
Army Signal Research and Development Laboratory, Fort Mon-
mouth, N. J., under contract No. DA 36-039 SC 87398.

T Stanford Research Institute, Menlo Park, Calif.

' A more complete treatment is given in [1], on which this paper
is based.

This paper is organized into nine parts, with the fol-
lowing purpose and content:

Section [ is introductory. It also discusses applica-
tions, and gives a number of definitions.

Sections I1 and III deal with the performance char-
acteristics of quarter-wave transformers and half-wave
filters. In these parts the designer will find what can be
done, not how to do it.

Sections IV to IX tell how to design quarter-wave
transformers and bhalf-wave filters. If simple general
design formulas were available, solvable by nothing
more complicated than a slide-rule, these parts would be
much shorter.

Section IV gives exact formulas and numerical solu-
tions for Chebyshev and maximally flat transformers of
up to four sections.

Section V gives exact numerical solutions for maxi-
mally flat (but not Chebvshev) transformers of up to
eight sections.

Section VI gives a first-order theory for Chebyshev
and maximally flat transtormers of up to eight sections,
with explicit formulas and numerical tables. It also
gives a general first-order formula, and refers to existing
numerical tables published elsewhere which are suitable
for up to 39 sections, and for relatively wide (but not
narrow) bandwidths.

Section VII presents a modified first-order theory, ac-
curate for larger transformer ratios than can be designed
by the (unmodified) first-order theory of Section VI.

Sections VIII and IX apply primarily to prototypes
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for filters, since they are concerned with large impedance
steps. They become exact only in the limit as the output-
to-input impedance ratio R tends to infinity. Simple for-
mulas are given for any number of sections, and previ-
ously published numerical tables on lumped-constant
filters are referred to.

Sections VIII and IX complement Sections VI and
VI1I which give exact results only in the limit as R tends
to zero. It is pointed out that the dividing line between
“small R” and “large R” is in the order of [2/(quarter-
wave transformer bandwidth) |?», where # is the number
of sections. This determines whether the first-order
theory of Sections VI and VII, or the formulas of
Sections VIII and IX, are to be used. An example
(Example 9) where R is in this borderline region is
solved by both the “small R” and the “large R” ap-
proximations, and both methods give tolerably good
results for most purposes.

Quarter-wave transformers have numerous applica-
tions besides being impedance transformers; an under-
standing of their behavior gives insight into many other
physical situations not obviously connected with im-
pedance transformations. The design equations and nu-
merical tables have, moreover, been developed to the
point where they can be used conveniently for the syn-
thesis of circuits, many of which were previously dif-
ficult to design.

Circuits that can be designed using quarter-wave
transformers as a prototype include: direct-coupled
cavity filters [2]; impedance transformers [3]-[8]; opti-
cal interference filters and antireflection coatings [9],
[10]; acoustical transformers [11], [12]; filters with
quarter-wavelength resonators [13]; branch-guide cou-
plers [14]; half-wave filters [15]; and short-line low-
pass filters. It is intended to follow up this paper with
others that will explain the design of some of these cir-
cuits, using the results and data published in this paper.

The insertion loss functions considered here are all for
maximally flat or Chebyshev response in the pass band.
It is of interest to note that occasionally other response
shapes may be desirable. Thus TEM-mode coupled-
transmission-line directional couplers are analytically
equivalent to quarter-wave transformers [16], but re-
quire insertion loss functions with maximally flat or
equal-ripple characteristics in the stop-band. Other in-
sertion loss functions may be convenient for other appli-
cations. For instance, in optics refractive index cor-
responds to characteristic admittance, but is not as
easily realized because of a limitation in available ma-
terials. The case when some refractive indexes (char-
acteristic admittances) are given a prior: leads to inser-
tion loss functions different from those considered
here [17].

As in the design of all microwave circuits, one must
distinguish between the ideal circuits analyzed, and the
actual circuits that have prompted the analysis, and
which are the desired end product. To bring this out
explicitly, we shall start with a list of definitions [18]:
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Homogeneous transformer—a transformer in which the
ratios of internal wavelengths and characteristic im-
pedances at different positions along the direction of
propagation are independent of frequency.

Inhomogeneous transformer—a transformer in which
the ratios of internal wavelengths and characteristic
impedances at different positions along the direction
of propagation may change with frequency.

Quarter-wave transformer—a cascade of sections of
lossless, uniform? transmission lines or media, each
section being one-quarter (internal) wavelength long
at a common frequency. Note: Homogeneous and in-
homogeneous quarter-wave transformers are now de-
fined by a combination of the above definitions. For
instance, an inhomogeneous quarter-wave transformer
is a quarter-wave transformer in which the ratios of
internal wavelengths and characteristic impedances,
taken between different sections, may change with
frequency.

Ideal junction—the connection between two imped-
ances or transmission lines, when the electrical effects
of the connecting wires, or the junction discontinui-
ties, can be neglected. (The junction effects may later
be represented by equivalent reactances and trans-
formers, or by positive and negative line lengths,
etc.)

Ideal quarter-wave transformer—a quarter-wave trans-
former in which all of the junctions (of guides or
media having different characteristic impedances)
may be treated as ideal junctions.

Half-wave filter—a cascade of sections of lossless uni-
form transmission lines or media, each section being
one-half (internal) wavelength long at a common
frequency.

Synchronous tuning condition—a filter consisting of a
series of discontinuities spaced along a transmission
line is synchronously tuned if, at some fixed frequency
in the pass band, the reflections from any pair of
successive discontinuities are phased to give the maxi-
mum cancellation. (A quarter-wave transformer is a
synchronously tuned circuit if its impedances form a
monotone sequence. A half-wave filter is a synchro-
nously tuned circuit if its impedances alternately in-
crease and decrease at each step along its length.)

Synchronous frequency—the “fixed frequency” re-
ferred to in the previous definition will be called the
synchronous frequency. (In the case of quarter-wave
transformers, all sections are one-quarter wavelength
long at the synchronous frequency; in the case of

2 A uniform transmission line, medium, etc., is here defined as one
in which the physical and electrical characteristics do not change with
distance along the direction of propagation. This is a generalization
of the IRE definition of uniform waveguide (See [19]).
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half-wave filters, all sections are one-half wavelength
long at the synchronous frequency. Short-line low-
pass filters may also be derived from half-wave filters,
with the synchronous frequency being thought of as
zero frequency.)

The filters and transformers considered here are
limited to homogeneous, synchronous types. For inhomo-
geneous [1], [7], [8], [18] or nonsynchronous [20]
transformers, the additional bibliography should be
consulted; this also lists references on the effect of dis-
sipation losses and on the power handling capacity,
which are not treated here.

Connection with Impedance Inverters

The realization of transmission-line discontinuities by
impedance steps is equivalent to their realization by
means of impedance inverters, popularized by Cohn.
The main difference is that while impedance steps can be
physically realized over a wide hand of frequencies, at
least for small steps, the impedance inverters can be
physically realized over only small bandwidths. As far
as using either circuit as a mathematical model, or pro-
totype circuit, is concerned, they give equivalent results,
as can be seen from Fig. 1.

————o—

IMPEDANCE STEP IMPEDANCE INVERTER

{LXNE CHARACTERISTIC LINE CHARACTERISTIC
IMPEDANCES = 2,,Z; IMPEDANCES = Zo

{!MPEDANCE RATIO OR JUNGTION VSWR

P R*
V222/2; OR Z,/Zz, WHICHEVER >1 EDANCE OF INVERTER=K

ELECTRICAL LENGTH=0 {ELELTRchL LENGTH = 90°
AT ALL FREQUENCIES AT ALL FREQUENGIES

FOR SAME COUPLING

K \*2
JUNGTION VSWR, V= (7) >\
0.

Fig. I-—Connection between impedance step and impedance inverter.

II. THE PERFORMANCE OF QUARTER-WAVE
TRANSFORMERS

This section summarizes the relationships between
the pass-band and stop-band attenuation; the fractional
bandwidth w, and the number of sections or resonators
n. Although the expressions obtained hold exactly only
for ideal transformers, they hold relatively accurately
for real physical transformers and for certain filters,
either without modification or after simple corrections
have been applied.

A quarter-wave transformer is depicted in Fig. 2.
Define the quarter-wave transformer f{ractional band-

width w, by
A1 — A
= (2 .
)\gl + )\g2

where A\, and A, are the longest and shortest guide
wavelengths, respectively, in the pass band of the
quarter-wave transformer. The length, L, of each section
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(Fig. 2) is nominally one-quarter wavelength at center
frequency and is given by

L Nte e
20\01 + >\02) 4

where the center {requency is defined as that frequency
at which the guide wavelength A, is equal to Ags.

When the transmission line is nondispersive, the free-
space wavelength A may be used in (1) and (2), which
then become

wr(i)-0nn) e

Ak o
L=——" =, (4)
20 4+ A 4

(2)

and

where f stands for frequency.
T ]

T

[ A

ELECTRICAL
LENGTHS .

PRYSICAL
LENGTHS

NORMALIZED
IMPEDANCES
Zp=1 Z, Za Z3 Zy —— = Zn  ZpyeR
JUNCTION VSWR's
v \A V3 Va - L
REFLECTION
COEFFICIENTS
T, T Ty Ty —_— | S
Z, v, -t
T m— D T ————
Y Zi-¢ ! T, Vi+!

Fig. 2—Quarter-wave transformer notation.

The transducer loss ratio is defined as the ratio of
Pavair, the available generator power, to P, the power
actually delivered to the load. The “excess loss” & is
herein defined by

e Pavail 1 (5)
== P, .

For the maximally flat quarter-wave transformer of #
sections and over-all impedance ratio R (Fig. 2), & is
given by

G

cos?” 0 = &, cos?" , (6)
4R

where
A
o= 2, Q)
2,

Ago being the guide wavelength at band center, where
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VSWR

!

1

|
|

I

I
° 2 3
NORMALIZED FREQUENCY, f OR,NORMALIZED RECIPROCAL GUIDE WAVELENGTH hgo/Ag

(a)

VSWR |

|

! '

o 1 2

NORMALIZED FREQUENCY f, OR, NORMALIZED RECIPROCAL GUIDE WAVELENGTH Ago/Ag
(b)

Fig. 3—Quarter-wave transformer characteristics.
(a) Maximally flat. (b) Chebyshev.

f=m/2; and where

(R —1)2
fa 4R ®
is the greatest excess loss possible. (It occurs when #isan
integral multiple of 7, since the sections then are an
integral number of half-wavelengths long.)
The 3-db fractional bandwidth of the maximally flat
quarter-wave transformer is given by

4 1[ 4R Tm o
(<3} == ~— 8In- o .
B (R — 1)°

The fractional bandwidth of the maximally flat
quarter-wave transformer between the points of x-db
attenuation is given by

4 4R[antilog (x/10) — 1]1 1/2n
Wo.p ab = — sin™! & — 1) .

(10)

™

For the Chebyshev transformer of {ractional band-
width w,,

(R — 1)? Tu*(cos 8/u0)

4R T (1/wo) ¢, (11)
= §,71,(cos 8/uq) J
where
wo = sin <@> (12)
4

T, is a Chebyshev polynomial (of the first kind) of order
n, and where the quantity

g L R-D 1 &
4R T2(U/me) Ta2(1/mo)

is the maximum excess loss in the pass band. [Compare
also (18), below.] The shape of these response curves
for maximally flat and Chebyshev quarter-wave trans-
formers is shown in Fig. 3. Notice that the peak trans-
ducer loss ratio for any quarter-wave transformer is

(13)
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Fig. 1—3-db bandwidths of maximally flat transformers.

P avail

Pload

R+ 1)
ga+1=( +1)° (14)
4R

and is determined solely by the output-to-input im-
pedance ratio, R.

For the maximally flat transformer, the 3-db frac-
tional bandwidth, w, s is plotted against log R for
n=2 to n=15 in Fig. 4. The attenuation given by (6)
can also be determined from the corresponding lumped-
constant low-pass prototype filter, which is available
graphically in several references [21], [22] to n=7 and
higher. If @’ is the frequency variable of the maximally
flat, lumped-constant, low-pass prototype, and w,’ is its
band edge, then

w cos @
= ) (15)

w1 Mo

where uo is defined by (12), and w, (which occurs in the
definition of wo) is the fractional bandwidth of the
maximally flat quarter-wave transformer between
points of the same attenuation as the attenuation of the
maximally flat low-pass filter at o’ =w;’. This enables
one to turn existing charts of attenuation vs w'/w;’
(usually w;’ corresponds to the 3-db points) into charts
of attenuation vs cos 8 of the quarter-wave transformer,
using (15).
For the Chebyshev transformer,

8o

P T2 (L/wo) = M(n, wy), (16)
where A7 is thus defined as a function of the number of
sections # and the bandwidth w,. It shows how much
the pass-band tolerance increases when it is desired to
improve the peak rejection. The function M in (16) is
given in Table I for all fractional bandwidths, w,, in
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TABLE 1
M, w) = T2 | ————
(n, ) [sin (wwy/d)
N\ %o
N 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
n \\\
2 0.1049 *6 0.6517 *4 0.1274 *4| 0.3978 *3| 0.1601 *3| 0.7575 *2| 0.4001 *2{ 0.2293 *2| 0.1400 *2| 0.9000 *1
3 0.6795 *8 0.1052 *7| 0.9094 *5) 0.1584 *5| 0.4036 *4| 0.1306 *4| 0.4972 *3| 0.2130 *3| 0.9966 *2| 0.5000 *2
4 0.4402 *11] 0.1699 *9| 0.6491 *7| 0.6313 #*6, 0.1020 *6| 0.2265 *5| 0.6246 *4| 0.2013 *4| 0.7291 *3| 0.2890 *3
5 0.2851 *14) 0.2742 *11| 0.4634 *91 0.2517 *8 0.2578 *7| 0.3930 *6| 0.7852 *5| 0.1906 *5| 0.5353 *4| 0.1682 *4
6 0.1847 *17( 0.4427 *13} 0.3308 *11| 0.1003 *10| 0.6516 *8| 0.6819 *7| 0.9872 *6| 0.1806 *6| 0.3933 *5| 0.9801 *4
7 0.1196 *20! 0.7148 *15| 0.2361 *13| 0.3999 *11] 0.1646 *10| 0.1183 *9| (0.1241 *8| 0.1710 *7) 0.2890 *6| 0.5712 *5
8 0.7751 #22] 0.1154 *18] 0.1685 *15| 0.1594 *13} 0.4162 *11| 0.2052 *10{ 0.1560 *9| 0.1620 *8| 0.2123 *7| 0.3329 *6
9 0.5021 *25 0.1863 *20] 0.1203 *17] 0.6355 *14] 0.1052 *13| 0.3561 *11| 0.1961 *10| 0.1535 *9| 0.1560 *8 0.1940 *7
10 0.3252 *28| 0.3008 *22: 0.8590 *18| 0.2533 *16| 0.2658 *14| 0.6178 *12| 0.2466 *11| 0.1454 *10; 0.1146 *9| 0.1131 *8
11 0.2107 *31; 0.4856 *24| 0.6132 *20| 0.1010 *18! 0.6720 *15 0.1072 *14] 0.3100 *12] 0.1377 *11; 0.8422 *9| 0.6592 *8
12 0.1356 *34] 0.7840 *26| 0.4377 *22| 0.4026 *19| 0.1698 *17| 0.1860 *15| 0.3898 *13| 0.1304 *12| 0.6188 *10]| 0.3842 *9
13 0.8842 *36) 0.1266 *29] 0.3124 *24| 0.1605 *21] 0.4292 *18| 0.3227 *16| 0.4901 *14| 0.1235 *13] 0.4547 *11| 0.2239 *10
14 0.5728 *39| 0.2044 *31| 0.2230 *26| 0.6397 *22| 0.1084 *20| 0.5598 *17| 0.6161 *15| 0.1170 *14| 0.3340 *12| 0.1305 *11
15 0.3710 *42| 0.3299 *33| 0.1592 *28| 0 2550 *24| 0.2742 *21} 0.9712 *18) 0.7746 *16; 0.1108 *15| 0.2451 *13] 0.7607 *11
\\\\ W, | :
. 1.1 1.2 1.3 1.4 1.5 1.6 1. 1.8 1.9 2.0
N
2 0.6046 *1| 0.4226 *1 | 0.3066 *1 | 0.2308 *1 | 0.1804+ *1 | 0.1467 *1 | 0.1243 *1 | 0 1103 *1 | 0.1024 *1 1.0
3 0.2654 *2| 0.1479 *2 ] 0.8611 *1 | 0.5234 *1 | 0.3331 *1 | 0 2236 *1 | 0.1601 *1 | 0.1241 *1 | 0.1056 *1 1.0
4 0.1230 *3| 0.5553 *2 | 0.2634+ *2 | 0 1308 *2 | 0.6802 *1 | 0.3739 *1 | 0.2213 *1 | 0.1454 *1 | 0.1102 *1 1.0
5 0.5771 *3} 0.2125 *3 | 0.8288 *2 | 0.3398 *2 | 0.1459 *2 | 0.6610 *1 | 0.3219 *1 | 0.1762 *1 | 0.1162 *1 1.0
6 0.2713 *4] 0.8170 *3 | 0.2631 *3 | 0 8965 *2 | 0.3206 *2 | 0.1206 *2 | 0.4853 *1 | 0.2197 *1 | 0 1239 *1 1.0
7 0.1276 *5] 0.3145 *4 | 0.8380 *3 | 0.2379 *3 | 0.7120 *2 | 0.2239 *2 | 0.7490 *1 | 0.2802 *1 | 0.1334 *1 1.0
8 0.6006 *5/ 0.1211 *5 | 0.2671 *% | 0.6327 *3 | 0.1588 *3 | 0.4197 *2 | 0 1174 *2 | 0.3639 *1 | 0.1450 *1 1.0
9 0.2826 *6| 0.4666 *5 | 0.8515 *1 | 0.1684 *1 | 0.3552 *3 | 0.7907 *2 | 0.1858 *2 | 0.4790 *1 | 0.1590 *1 1.0
10 0.1329 *7| 0.1797 *6 | 0.2715 *5 | 0.41483 *1 | 0.7950 *3 | 0.1493 *3 | 0.2959 *2 | 0.6371 *1 | 0.1756 *1 1.0
11 0.6257 *7) 0.6923 *6 | 0.8656 *5 | 0.119+ *5 | 0.1780 *1 | 0.2825 *3 | 0 4730 *2 | 0.8542 *1 | 0.1954 *1 1.0
12 0.2944 *8] 0.2667 *7 | 0.2760 *6 | 0 3179 *5 | 0.3986 *4 | 0.5347 *3 | 0.7581 *2 | 0.1152 *2 | 0.2187 *1 1.0
13 | 0.1385 *9| 0 1027 *8 | 0 8800 *6 | 0.8165 *5 | 0 8928 *1 | 0.1012 *4 | 0.1216 *3 | 0.1560 *2 | 0.2463 *1 10
14 0.6518 *9] 0.3956 *8 | 0.2806 *7 | 0.2254 *6 | 0.1999 *5 | 0.1918 *4 | 0.1954 *3 } 0.2120 *2 | 0.2787 *1 1.0
15 | 0 3067 *10{ 0 1524 *9 | 0.8947 *7 1 0 6003 *6 | 0 4478 *5 | 0 3632 *4 | 0.3142 *3 | 0.2888 *2 | 0.3167 *1 1.0

* 4 means “multipty by 104" and so on

steps of 10 per cent, for =2 to n=15. The smallest
fractional bandwidth in Table T is w,=0.1. For small
bandwidths,

8 Zn
<~—> ,  (wysmall). (A7)

Ea 21 ) 1
— =T, /) = —
’ 4 \7w,

&,
The attenuation given by (11) for the Chebyshev
quarter-wave transformer can also be determined from
graphs of the corresponding lumped-constant, low-
pass, prototype filter [as already explained for the
maximally flat case in connection with (13)] by using
the same (15) except that now w;’ is the Chebyshev
(equal-ripple) band edge of the low-pass filter.?
The maximum VSWR may be worked out from Table
I, using the relation

g = ——— 18
1V, (18

¢ In {21], the lumped-constant characteristics for the Chebyshev
filters are plotted against a frequency scale normalized with respect
to the 3-db point and not the equal-ripple band edge. Since the curves
in [21] are all plotted down to the equal-ripple band edge, this band-
edge frequency can be read off and all frequencies divided by it, thus
making w’/w’ =1 at the equal-ripple band edge before applying (15).

|

where 17, is the ripple VSWR (maximum VSWR in the
pass band), together with (8) and (16). The maximum
VSWR for R less than 100 is also tabulated in [1] and
[6].

Example 1: Determine the minimum number of sec-
tions for a transformer of impedance ratio R=100 to
have a VSWR of less than 1.15 over a 100 per cent
bandwidth (w,=1.0).

From (18), for V,=1.15,

& = 0.00489 (19)
and from (8), for R=100,
8, = 24.5. (20)
Hence, (16) gives
M(n,w,) = T22(1/ue) = —z—a = 0.501 X 104, (21

T

From Table I, in the column w,= 1.0, it is seen that this
value of M(n, w,) falls between n =35 and n=06. There-
fore, the transformer must have at least six sections.
(See also Example 6.)
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111. Taue PERFORMANCE OF HALF-WAVE FILTERS

The half-wave filter was defined in Section I. It is
shown in Fig. 5. Its fractional bandwidth w; is defined
[compare (1)] by

Agt — Ago
wy = 2(11 i) (22)
)\yl + )\g2
and the length L’ of each section [compare (2)] is
o Mede Ao (23)
Ag1 + Age 2

where N\,; and A, are the longest and shortest wave-
lengths, respectively, in the pass band of the half-wave
filter. This can’be simplified for nondispersive lines by
dropping the suffix “g,” as in (3) and (4). A half-wave
filter with the same junction VSWR's V, (Figs. 2 and 5)
as a quarter-wave transformer of bandwidth w, has a
bandwidth

(24)

since its sections are twice as long and so twice as fre-
quency-sensitive. The performance of a half-wave filter
generally can be determined directly from the per-
formance of the quarter-wave transformer with the
same number of sections # and junction VSWR’s 17,
by a linear scaling of the frequency axis by a scale-factor
of 2. Compare Figs. 6 and 3. The quarter-wave trans-
former with the same # and V; as the half-wave filter
is herein called its prototype circuit.

In the case of the half-wave filter, R is the maximum
VSWR, which is no longer the output-to-input im-
pedance ratio, as for the quarter-wave transformer, but
may generally be defined as the product of the junction
VSWR’s:

R = I"lV;z o Vn+1. (25)

This definition applies to both the quarter-wave trans-
former and the half-wave filter, as well as to filters whose
prototype circuits they are. (In the latter case, the T,
are the individual discontinuity VSWR's.)
The equations corresponding to (6)—(18) will now be
restated, wherever they differ, for the half-wave filter.
For the maximally flat half-wave filter of n sections

(R—1)* .
& = sin?* ¢’ = §, sin?" ¢, (26)
where
A
f =x " =29 27)
Ag

instead of (7), so that ¢’ =7 (instead of #=7w/2) at band

center. The 3-db bandwidth of the maximally flat half-
wave filter is

(28)

— 1
Wh, 3db = TWq, 3db
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Fig. 5—Half-wave filter notation.
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Fig. 6—Half-wave filter characteristics. (a) Maximally
flat. (b) Chebyshev.

and the bandwidth between the points of x-db attenua-
tion is

Wh,zdb = %wq,r db (29)
which can be obtained from (9) and (10).
For the Chebyshev half-wave filter
(R — 1)2 T.2(sin ' /ug)
4R Ta2(1/uo) 5 (30)
= &T2(sin &' /o),
where
. TWq . TWh
=sin|—— | = -} 31
()T o

The quantities &, &,, and the maximum transducer
loss ratio are still given by (8), (13), and (14). For
maximally flat half-wave filters, the graph of Fig. 4 can
again be used, but with the right-hand scale.

The lumped-constant low-pzss prototype filter graphs
[21], [22] may again be used for both the maximally
flat and Chebyshev half-wave filters by substituting

w’ sin 6’
- = (32)

wy Mo
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for (15), where ug is given by (31). n=23
Eq. (16) and Table I still apply, using (24) to convert B 2R R 3uox(R — 1)
between w, and w. Vet 2RV = = — = ————( .
Example 2: Find R for a half-wave filter of six sec- Vi Vi + = 3us® S (38)
tions having a Chebyshev fractional bandwidth of 60 Vo= RY/V,

per cent with a pass-band ripple of 1 db.

Here, w,=0.6, or w,=1.2. From (13), n=
:12 1/ l 1/2
| (R-1 1 o Arl s ()]
antilog (0.1) — 1 = (33) R
4R Tez(l,/uo) 1
Vy = —
and from Table I, for w,=1.2, 4
B (R—1)?2 1 V, = AR
1259 — 1=~ —. e
iR 817
where
Hence, R=2850. 1—1/R [(1 — 1/R)? 1 -‘1/2
AT 9 2.2 ® 3
IV. Exact CHEBYSHEV AND MAXIMALLY FLAT “hiz s R (39)
SOLUTIONS FOR UP TO FOUR SECTIONS _ L( 4 *>2
Enough exact solutions will be presented to permit 2\ A+
the solution of all intermediate cases by interpolation \ 1 2
for Chebyshev and maximally flat transformers and ) [(il + 4) <A - T&) - + ***jl
filters having up to four sections. .
The solutions were obtained from Collin’s formulas and B
[4]. With the notation of Fig. 1, they can be reduced to 22
the expressions given below. The equations are first h= "~ 1
. . . (V2 + Duo
given for maximally flat transformers and then for _
Chebyshev transformers. 1y = _2\/2 _1
. (V2 = Duo?
Maximally Flat Transformers for n=2, 3, and 4
. A difference between typical quarter-wave trans-
n =2 Vi=R /4} (34) formers, and half-wave filters suitable for use as proto-
Ve, = RY? types for microwave filters, is that, for the former, R is
relatively small (usually less than 100) and only the
n=23 2RM? R

pass-band performance is of interest; for the latter, R is
(35) relatively large, and the performance in both pass band
and stop band is important. A set of tables for =2, 3,
and 4, and for R from 1 to 100 has already been given
AR in [6] (there they cover w,=0 to 1.2; they are extended
to w,=2.0 in [1}]).
R The solutions of (34)—(39) for larger values of R are
R4/ A2 presented here in another set of tables (Tables II to V).
(36) They give the values of 1 and 175 for =2, 3, and 4.
The remaining values of 1" are obtained from the sym-

(i _ 412> -9 (}i““_—l) metry relations
4 RY% 41

Chebyshev Transformers for n=2, 3, and 4

V% -+ 2RV, —

Vi Vlz }
)

Vs = RV,

n =4 V1
Ve
Vs

I

Il

I

where

ZZnpin = R (40)

(where the Z, are normalized so that Z,= 1), or

n =2 V2= VCT—?§+ C Vi= Vaga—i (41)
V2 = .R//I/l2 or
where (37)
2 = & Iya (42)
. (R - 1)#0“
2(2 _ ﬂoz) AISO
and po is given by (12). ViVo-+ - Vup1=R (43)
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TABLE 11
Vs FOrR Two-SECTION QUARTER-WAVE TRANSFORMERS

Log
R
N 0 1 2 3 + 5 6 7 8 9 10 ©
W \\
0 1.0 31622 | 10.0000 | 31.6227 |100.0000 |316.2278 * * * * * ©
0.2 1.0 3.1070 | 9.4056 | 26.0349 | 55.6931 | 76.0577 | 80.2075 | 80.6742 | 80.7215 | 80.7263 | 80.7267 | 80.7267
0.4 1.0 2.9446 7.8214 | 15.2942 | 19.2101 | 19.8657 | 19.9363 | 19.9434 | 19.9441 | 19.9442 | 19.9443 | 19.9443
0.6 1.0 2.6872 5.8168 8.1357 8.6395 8.6971 8.7030 8.7036 8.7037 8.7037 8.7037 8.7037
0.8 1.0 2.3592 | 4.0455 | 4.0882 4.7783 | 4.7878 | 1.7887 | 4 7888 | 1.7889 | 1 7889 | 4.7889 | 4.7889
1.0 1.0 2.0000 | 2.7937 2.9763 2.9976 2.9997 3.0000 | 3.0000 | 3.0000 | 3.0000 3.0000 | 3.0000
1.2 1.0 1.6569 1.9939 2.0491 2.0550 | 2.0556 2.0557 2.0557 2.0557 2.0557 2.0557 2.0537
1.4 1.0 1.3708 1.5000 1.5172 1.5190 1.5192 1 5192 1.5192 1 5192 1.5192 1.5192 1.5192
1.6 1.0 1.1635 1.2055 1.2105 1.2110 1.2111 1.2111 1.2111 1.2111 1.2111 1.2111 1.211
1.8 1.0 1.0405 1.0491 1.0500 1.0501 1.0502 1.0502 1.0502 1 0502 1.0502 1.0502 1.0502
2.0 1.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1 0000 1.0000 1.0000 1 0000 1.0000
TABLE 1II
V> FOR THREE-SECTION QUARTER-WAVE TRANSFORMERS
Log
R
0 1 2 3 4 5 6 7 8 9 10 ®
W,
0 1.0 2.358 5.424 12.14 26.66 57.99 125.50  [270.94  |384.31 * * Cd
0.2 1.0 2.344 5.337 11.68 24.46 47.69 79.82 101.7501 {106.8067 {107.3998 |107.4610 |107.4679
0.4 1.0 2.300 5.064 10.30 18.10 244154 | 26.1709 | 26.3912 | 26.4138 | 26.4161 | 26.4163 | 26.4164
0.6 1.0 2.222 4.5885 8.1080 | 10.6644 | 11.3276 | 11.4081 | 11.4163 | 11.4171 | 11.4172 | 11.4173 | 11.4173
0.8 1.0 2.103 3.9083 5.5671 6.1014 6.1728 6 1802 6.1809 6.1810 | 6.1810 6.1810 | 6.1810
1.0 1.0 1.9344 3.0919 | 3.6649 | 3.7630 3.7736 | 3.7747 3.7748 3.7748 3.7748 3.7748 3.7748
1.2 1.0 1.7158 | 2.3085 2.4686 | 2.4884 | 2.4904 2.4906 | 2.4907 2.4907 2.4907 2.4907 2.4907
1.4 1.0 1 4647 1.7022 1.7428 1 7472 1.7477 1.7477 1.7477 1.7477 1.7477 1.7477 1.7477
1.6 1.0 1.2269 1.2995 1.3089 1.3099 1.3100 1.3101 1.3101 1.3101 1.3101 1.3101 1.3101
1.8 1.0 1.0596 1.0731 1.0746 1.0747 1.0478 1.0748 1.0748 1.0748 1.0748 1.0748 1.0748
2.0 I 1.0 1.0000 1.0000 1.0000 1 0000 1.0000 1.0000 1.0000 1.0000 1 0000 1.0000 1.0000
TABLE 1V
Vs rOor FOUR-SECTION QUARTER-WAVE TRANSFORMERS
\ Log
R
0 1 2 3 4 5 6 7 8 9 10 »
Wq
0 1.0 1.7782 3.1622 5.6234 | 10.0000 | 17.7827 | 31.6227 | 56.2341 [100.0000 [177.8279 |316.2277 o
0.2 1.0 1.7781 3.1616 5.6200 | 9.9808 | 17.6752 | 31.0220 | 52.9321 | 82.9105 |106.5498 [113.2186 {114.1604
0.4 1.0 1.7766 | 3.1524 | 5.5677 | 9.6904 | 16.1089 | 23.4997 | 27.3837 | 28.0996 | 28.1787 | 28.1867 | 28.1877
0.6 1.0 1.7698 | 3.1107 5.3364 8.4944 | 11.2447 | 12.1344 | 12.2543 | 12.2667 | 12.2680 | 12.2681 | 12.2682
0.8 1.0 1.7503 2.9928 | 4.7320 6.1880 | 6.6331 6.6915 6.6975 6.6981 6.6982 6.6982 6.6982
1.0 1.0 1.7054 | 2.7392 3.7126 | 4.0665 | 4.1171 4.1225 4.1230 | 4.1230 | 4.1231 4.1231 4.1231
1.2 1.0 1.6172 2.3157 2.6617 2.7224 | 2.7290 2.7297 2.7298 | 2.7298 2.7298 | 2.7298 | 2.7298
1.4 1.0 1.4676 1.8065 1.8903 1.9004 1.9014 1.9016 1.9016 1.9016 1.9016 1.9016 1.9016
1.6 1.0 1.2645 1.3725 1.3886 1.3904 1.3905 1.3906 1.3906 1.3906 1.3906 1.3906 1.3906
1.8 1.0 1 0768 1.0956 1.0978 1.9080 1.0980 1.0980 1.0980 1.0980 1.0980 1.0980 1.0980
2.0 1.0 1 0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1 0000 1 0000 1.0000 1.0000
TABLE V
V3 FOR FOUR-SECTION QUARTER-WAVE TRANSFORMERS
Log
N R
N 0 1 2 3 1 5 6 7 8 0 10 »
w, N\
0 1.0 2.3148 5.2063 | 10.7833 | 21.102% | 39.7366 | 73.0562 [132.4190 |238.0478 [425.9232 |76().0403 ES
0.2 1.0 2.3266 | 5.1045 | 10.3536 | 19.5265 | 34.4781 | 56.7950 | 85.7685 |114.9996 |132.4555 |136.7239 |137.7307
0.4 1.0 2.2728 | 4.8133 9.1941 | 15.6771 | 23.5245 | 30.2006 | 33.0054 | 33.4806 | 33.5323 | 33.5375 | 33.5382
0.6 1.0 2.1853 | 4.3689 7.6018 | 11.1871 | 13.5788 | 14.2420 | 14.3279 | 14.3367 | 14 3376 | 14.3377 | 14.3378
0.8 1.0 2.0664 | 3.8146 | 5.8599 7.2224 7.5865 7.6326 7.6374 7.6379 7 6380 7.6380 7.6380
1.0 1.0 1.9169 | 3.1842 4.1904 | 4.5121 4.5564 | 4.5610 | 4.5615 4.5615 | 4.5615 4.5615 4.5615
1.2 1.0 1.7347 2.5101 2.8558 2.9136 |, 2.9199 | 2.9205 2.9206 2.9206 | 2.9206 | 2.9206 | 2.9206
1.4 1.0 1.5163 1.8739 1.9587 1.9688 1.9699 1.9700 1.9700 1.9700 1.9700 1.9700 1.9700
1.6 1.0 12767 1.3880 1.4045 1.4062 1.4064 1.4064 1.4064 1.4064 1.4064 1.4064 1.4064
1.8 1.0 1.0777 1.0967 1.0989 1.0991 1.0992 1.0992 1.0992 1.0992 1.0992 1.0992 1.0992
2.0 1.0 1 0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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which, for even #, reduces to

ViVe- Vo) Viworer = R 44
and for odd #, reduces to
(ViVa - - - Vigpny2)? = R (45)

Equations (40) to (45) hold for all values of #.

Tables 11 to V give the step VSWR’s for R from 10
to « in multiples of 10. Note that for Chebyshev trans-
formers 175, Vi, -+ -, ", and T/ (R)V2=V, 4/ (R)V?
tend toward finite limits as R tends toward infinity, as
can be seen from (34)—(39) for # up to 4, by letting R
tend toward infinity. (For limiting values as R tends
toward infinity and # >4, see Section 1X.) The tables
give fractional bandwidths, w,, from 0 to 2.00 in steps
of 0.20. [The greatest possible bandwidth is w,=2.00,
by definition, as can be seen from (1). ]

When interpolating, it is generally sufficient to use
only the two nearest values of 1" or Z. In that case, a
linear interpolation on a log 17 or log Z against log R
scale is preferable. Such interpolations, using only first
differences, are most accurate for small R and for large
R, and are least accurate in the neighborhood

2 2(n—1)
()
Wy

In this region, second or higher order differences may
be used (or a graphical interpolation may be more con-
venient) to achieve greater accuracy.

Example 3: Find the step VSWR’s 175, 15, 17, and
It for a three-section quarter-wave transformer of
80-per cent bandwidth and R=200. Also, find the maxi-
mum pass-band VSWR,

Here, =3 and w,=0.8. For R=100, from Table III,

(46)

Vy = 3.9083
w log ¥y = 0.5920,

For R=1000,
Vo=

1l

<o
~T
N
un
j=)

L log
Now, for R=200,
log R = 2.301.
Interpolating linearly,
log V, = 0.3920 + 0.301(0.7456 — 0.5920)
= 0.6382
Ve = 4.347 = V3 also.

From (43) or (45),
(V\Vs)? = R
Vl = V4 == 2086
The maximum pass-band VSWR, 17, is found from (8),

(13), and Table I, which give & =0.23, and then (18)
determines the maximum pass-band VSWR, 17, =2.5.
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V. Exact MaxiMarLLy FLAT SOLUTIONS FOR UP TO
Ei1eHT SECTIONS

Enough exact solutions will be presented to permit
the solution of all intermediate cases by interpolation,
for maximally flat transformers with up to eight sec-
tions.

The solutions were obtained by Riblet’s method. This
is a tedious procedure to carry out numerically; it re-
quires high accuracy, especially for large values of R.
In the limit as R becomes very large, approximate for-
mulas adapted from Cohn’s work on direct-coupled
cavity filters [2] become quite accurate, and become
exact in the limit, as R tends to infinity. This will be
summarized in Section VIII. For our present purposes, it
is sufficient to point out that, for maximally flat trans-
formers, the ratios

(47)

il

:11 = A,H—l = V1/R”2" )
A4, =V,/RiUr i#1orn-+ 1}

tend to finite limits as R tends to infinity. (See Section
1X.)

Table VI gives the impedances Z; to Z: (Fig. 2) of
maximally flat quarter-wave transformers of 5, 6, 7, and
8 sections for values of R up to 100. The impedances of
maximally flat transformers of 2, 3, and 4 sections were
already given in Tables II to V (case of w,=0) and in
[6]. The remaining impedances not given in these tables
are determined from (40).

Table VII gives the 4; defined in (47) for maximally
flat transformers of from 3 to 8 sections for values of R
from 1 to = in multiples of 10. The .1; change relatively
little over the infinite range of R, thus permitting very
accurate interpolation. The 17; are then obtained from
(47), (41) and (43). The case n=2 is not tabulated,
since the formulas in (34) are so simple.

VI. ApproxiMATE DEesioN WHEN R Is SmaLr
First-Order Theory

Exact numerical Chebyshev solutions for n>4, cor-
responding to the maximally flat solutions up to n=28
in Section V, have not yet been computed. When the
output-to-input impedance ratio R approaches unity,
the reflection coefficients of the impedance steps ap-
proach zero, and a first-order theory is adequate. The
first-order theory assumes that each discontinuity
(impedance step) sets up a reflected wave of small am-
plitude, and that these reflected waves pass through the
other small discontinuities without setting up further
second-order reflections. This theory holds for “small

R” as defined by
2 n/2
R < <w)
W,y

and can be useful even when R approaches (2/w )", par-
ticularly for large bandwidths.

{48)
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TABLE VI
IMPEDANCES OF MAXIMALLY FLAT TRANSFORMERS

September

n=>35 n==6 n="7 n=8
R
Zy Zy Zy Zo Zs Z1 Zs Zs Zy Zy Zs Zs
1.5 1.01277 | 1.07904 | 1.00636 | 1.04540 | 1.14960 | 1.00318 | 1.02570 | 1.09628 | 1.00158 | 1.01438 | 1.06041 | 1.15872
2.0 1.02201 | 1.13908 | 1.01096 | 1.07904 | 1.26929 | 1.00547 | 1.04448 { 1.17039 | 1.00273 | 1.02481 | 1.10571 | 1.28658
2.5 1.02931 | 1.18816 | 1.01458 | 1.10608 | 1.37082 | 1.00727 | 1.05944 | 1.23157 | 1.00363 | 1.03307 | 1.14243 | 1.39558
3.0 1.03539 | 1.23002 | 1.01759 | 1.12884 | 1.45995 | 1.00878 | 1.07195 | 1.28415 | 1.00438 | 1.03997 | 1.17355 | 1.49162
3.5 1.04061 | 1.26672 | 1.02018 | 1.14861 | 1.53996 | 1.01007 | 1.08275 | 1.33055 | 1.00503 | 1.04590 | 1.20071 | 1.57813
4.0 1.04521 | 1.29954 | 1.02246 | 1.16613 | 1.61292 | 1.01121 | 1.09229 | 1.37227 | 1.00560 | 1.05114 | 1.22490 | 1.65722
4.5 1.04932 | 1.32931 | 1.02450 | 1.18191 | 1.68026 | 1.01223 | 1.10085 | 1.41030 | 1.00611 | 1.05583 | 1.24678 | 1.73039
5.0 1.05305 | 1.35663 | 1.02635 | 1.19631 | 1.74297 | 1.01315 | 1.10863 | 1.44534 | 1.00658 | 1.06009 | 1.26681 | 1.79870
6.0 1.05962 | 1.40549 | 1.02961 | 1.22186 | 1.85731 | 1.01479 | 1.12240 | 1.50837 | 1.00740 | 1.06762 | 1.30252 | 1.92356
7.0 1.06530 | 1.44845 | 1.03243 | 1.24413 | 1.96010 | 1.01620 | 1.13436 | 1.56414 | 1.00812 | 1.07414 | 1.33381 | 2.03617
8.0 1.07032 | 1.48696 | 1.03493 | 1.26395 | 2.05396 | 1.01746 | 1.14496 | 1.61440 | 1.00875 | 1.07992 | 1.36177 | 2.13926
9.0 1.07482 | 1.52196 | 1.03717 | 1.28186 | 2.14066 | 1.01859 | 1.15451 | 1.66032 | 1.00932 | 1.08513 | 1.38714 | 2.23474
10.0 1.07892 | 1.55413 | 1.03921 | 1.29822 | 2.22148 | 1.01962 | 1.16322 | 1.70270 | 1.00984 | 1.08987 | 1.41041 | 2.32393
15.0 1.09531 | 1.68600 | 1.04740 | 1.36450 | 2.56378 { 1.02375 | 1.19830 | 1.87818 | 1.01194 | 1.10895 | 1.50543 | 2.70350
20.0 1.10760 | 1.78804 | 1.05356 | 1.41497 | 2.84017 | 1.02688 | 1.22484 | 2.01581 | 1.01354 | 1.12335 | 1.57860 | 3.01198
25.0 1.11753 | 1.87251 | 1.05855 | 1.45628 | 3.07621 | 1.02942 | 1.24645 | 2.13089 | 1.01484 | 1.13507 | 1.63889 | 3.27666
30.0 1.12592 | 1.94524 | 1.06277 | 1.49152 | 3.28448 | 1.03158 | 1.26482 | 2.23080 | 1.01594 | 1.14502 | 1.69087 | 3.51111
35.0 1.13322 | 2.00950 | 1.06646 | 1.52243 | 3.47223 | 1.03347 | 1.28087 | 2.31965 | 1.01692 | 1.15371 | 1.73661 | 3.72308
40.0 1.13969 | 2.06729 | 1.06973 | 1.55006 | 3.64407 | 1.03515 | 1.29518 | 2.40004 | 1.01778 | 1.16146 | 1.77770 | 3.91762
45.0 1.14552 | 2.12000 | 1.07268 | 1.57510 | 3.80311 | 1.03667 | 1.30812 | 2.47372 | 1.01857 | 1.16845 | 1.81513 | 4.09813
50.0 1.15084 | 2.16856 | 1.07538 | 1.59807 | 3.95162 | 1.03805 | 1.31996 | 2.54192 | 1.01928 | 1.17485 | 1.84958 | 4.26701
60.0 1.16027 | 2.25588 | 1.08017 | 1.63911 | 4.22331 | 1.04052 | 1.34106 | 2.66530 | 1.02056 | 1.18624 | 1.91145 | 4.57684
70.0 1.16847 | 2.33312 | 1.08434 | 1.67513 | 4.46845 | 1.04268 | 1.35951 | 2.77519 | 1.02168 | 1.19620 | 1.96609 | 4.85724
80.0 1.17575 | 2.40267 | 1.08805 | 1.70736 | 4.69297 | 1.00460 | 1.37597 | 2.87473 | 1.02269 | 1.20507 | 2.01523 | 5.11474
90.0 1.18230 | 2.46613 | 1.09139 | 1.73661 | 4.90095 | 1.04634 | 1.39087 | 2.96605 | 1.02359 | 1.21310 | 2.06003 | 5.35379
100.0 1.18828 | 2.52464 | 1.09444 | 1.76343 | 5.09522 | 1.04793 | 1.40450 | 3.05064 | 1.02442 | 1.22043 | 2,10129 | 5.57761
TABLE VII
A; oF MAXIMALLY FLAT TRANSFORMERS
141 = A"+1 i Vl/Rll2n
A, = V.JRM» when 51,0+ 1
Log n=3 n=4% n=35 n=06 n=7 n=8
R4, 4 4 A, 4, 4 A, A 4, 4, 4, A, A4, 44
0| 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
1 0.9135 | 0.8708 | 0.8570 | 0.9088 | 0.8577 | 0.8510 | 1.1658 | 0.8649 | 0.8210 | 1.0534 | 0.8744 | 0.8093 | 0.9704 | 1.2355
21 0.8557 | 0.7793 | 0.7497 | 0.8458 | 0.7456 | 0.7478 | 1.3411 | 0.7541 | 0.6941 | 1.1250 | 0.7682 | 0.6699 | 0.9682 | 1.4926
310.8239 | 0.7221 | 0.6755 | 0.8084 | 0.6619 | 0.6837 | 1.5107 | 0.6664 | 0.6110 | 1.2147 | 0.6803 | 0.5736 | 0.9966 | 1.7432
4 10.8080 | 0.6883 | 0.6263 | 0.7873 | 0.6013 | 0.6451 | 1.6629 | 0.5987 | 0.5578 | 1.3131 | 0.6090 | 0.5084 | 1.0468 | 1.9665
510.8004 | 0.6689 | 0.5943 | 0.7753 | 0.5582 | 0.6217 | 1.7911 | 0.5473 | 0.5238 | 1.4103 | 0.5519 | 0.4645 | 1.1088 | 2.1524
61 0.7968 | 0.6579 | 0.5738 | 0.7684 | 0.5281 | 0.6073 | 1.8934 | 0.5087 | 0.5016 | 1.4992 | 0.5069 | 0.4348 | 1.1745 | 2.2997
710.7951 | 0.6516 | 0.5607 | 0.7643 | 0.5071 | 0.5983 | 1.9717 | 0.4801 | 0.4871 | 1.5760 | 0.4717 | 0.4144 | 1.2384 | 2.4125
810.7943 | 0.6481 | 0.5523 | 0.7618 | 0.4926 | 0.5924 | 2.0296 | 0.4590 | 0.4773 | 1.6394 | 0.4444 | 0.4003 | 1.2969 | 2.4976
9 —_ 0.6461 | 0.5471 | 0.7603 | 0.4827 | 0.5886 | 2.0716 | 0.4436 | 0.4707 | 1.6900 | 0.4234 | 0.3904 | 1.3481 | 2.5610
10 —_ 0.6450 | 0.5437 | 0.7594 | 0.4758 | 0.5861 | 2.1013 | 0.4324 | 0.4661 | 1.7293 | 0.4074 | 0.3834 | 1.3914 | 2.6078
11 —_ —_ 0.5416 | 0.7588 | 0.4712 | 0.5845 | 2.1222 | 0.4242 | 0.4630 | 1.7593 | 0.3952 | 0.3784 | 1.4270 | 2.6423
12 — —_ 0.5403 | 0.7584 | 0.4680 | 0.5833 | 2.1366 | 0.4183 | 0.4607 | 1.7817 | 0.3860 | 0.3747 | 1.4557 | 2.6681
© { 0.7937 | 0.6436 | 0.5380 | 0.7579 | 0.4612 | 0.5810 | 2.1684 | 0.4031 | 0.4553 | 1.8433 | 0.3578 | 0.3646 | 1.5538 | 2.7430
* For n=4, 4:=1.0000.
Denote the reflection coefficients of an m-section lowing ratio formulas relate the reflection coefficients
transformer or filter by up to n=3_.
I';,, where i=1,2---,n+1 For n=2,
. . TiiTe=1:2¢% 51
to give a Chebyshev response of bandwidth, w,. Let ! (51)
For n=3,
TW,
¢=cos{— =) (49) [1:Te=1:3c2 (52)
For n=4,
The quantity ¢ is related to uo of (12) by
DT Ty=1:4¢%:2c¢%(24¢?). (53)
2+ u2=1 50
Ko (50) For n=35,
Then, for n-section Chebyshev transformers, the fol- Ty T2 Ty=1:502:5¢2(14-¢%). (54)
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TABLE VIII
TaBLE OF I',/Ty
Band- n=2 n=3 n=4 n=5 =6 n=T n=38
width,
wq i=2 | a=2 | i=2 | i=3 | a=2 | w=3 | i=2 | a=3 | i=4 | i=2 | =3 | =t | i=2 | u=3 | i=t | i=5
0.0 2.0000 | 3.0000 | 4 0000 |{ 6.0000 | 5.0000 {10.0000 | 6.0000 |15.0000 |20.0000 | 7.0000 121.0000 {35.0000 | 8.0000 }28.000C }56.0000 }70.0000
0.2 1.9511 | 2.9266 | 3.9021 | 5.8054 | 4.8776 | 9.6359 | 5 8532 {14.4181 [19 1298 | 6.8287 (20.1519 |33.3120 | 7.8042 {26.8373 |53.1111 [66.1559
0.4 1.8090 | 2 7135 | 3 6180 | 5.2543 | 4.5225 | 8.6132 | 5.4270 [12.7903 |16.7247 | 6 3316 [17.7855 [28.6925 | 7.2361 {23.5988 |15 2566 |55.7879
0.6 | 1.5878 | 2.3817 | 3.1756 | 4.4361 | 3.9605 | 7.1208 { 4.7634 |10.4357 |13.3273 | 5.5572 {14.3810 |22.295% | 6.3511 |18.0564 |34.5251 |41.8439
0.8 | 1.3090 | 1.9635 | 2.6180 | 3.4748 | 3.2725 | 5.4144 | 3.9271 | 7.7825 | 0.6284 | 4 5816 |10.5789 |15.5402 | 5.2361 |13.8037 |23.4303 |27.7530
1.0 | 1.0000 | 1.5000 | 2.0000 | 2.5000 | 2.5000 | 3.7500 | 3.0000 | 5.2500 | 6.2500 | 3 5000 | 7.0000 | 9.6250 | 4.0000 | 90000 {14.0000 |16.1250
1.2 | 06910 | 10365 | 1.3820 | 1.6207 | 1.7275 | 2.3243 | 2 0729 | 3.1472 | 3.5878 | 2.4184 | 4 0895 | 5.2138 | 2.7630 | 5.1512 | 7.2434 | 8.0793
1.4 | 074122 | 0.6183 | 0.8244 | 0.9094 | 1.0305 | 1.2429 | 1.2366 | 1.6190 | 1.7639 | 1.4428 | 2 0375 | 2 3061 | 1.6480 | 2.3985 | 3.1483 | 3.3919
1.6 | 0.1910 | 0.2865 | 0.3820 | 0.4002 | 0.4775 | 0.5231 | 0.5730 | 0.6550 | 0 6841 | 0.6684 | 0.7961 | 0.8660 | 0.7630 | 0.9463 | 1.0697 | 1.1133
1.8 1 0.0489 | 0.0734 | 0.0079 | 0 0991 | 0.1224 | 0.1254 | 0.1468 | 0.1522 | 0.1540 | 0.1713 | 0.1797 | 0.1840 | 0.1958 | 0.2078 | 0.2152 | 0.2177
2.0 |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
For n=6, vided that R is “small” as defined by (48). (Compare

Py:Dei T Ty=1:6¢%:3c%(2+43¢%) 1 2c3(3+6c*+-¢%).  (53)

For n=7,
TiiToi T Tu=1:7c7c2(142¢%) 1 73 (1432 +¢%) . (56)
For n=3§,
Tyl Ty Ty Ty=1:8c2:4¢* (24 5¢2) : 8c2(1 4462+ 2¢%)
12¢2(44-18c2+12¢4+-¢%). (57)

Table VIII tabulates the T',/T'; for all fractional band-
widths in steps of 20 per cent in w,, for transformers of
up to eight sections. The I"s are obtained from the
appropriate one of the above equations, or from Table
VIIT together with (42) and the specified value of R.
(See Example 4.) When w,=0 (maximally flat case),
the Is reduce to the binomial coefficients. (A general
formula for any # will be given below.)

Range of Validity of First-Order Theory

For a transformer of given bandwidth, as R increases
from unity on up, the T'; all increase at the same rate
according to the first-order theory, keeping the ratios
T',/T'; constant. Eventually one of the I', would exceed
unity, resulting in a physically impossible situation,
and showing that the first-order theory has been
pushed too far. To extend the range of validity of the
first-order theory, it has heen found advantageous to
substitute log 17, for I';. This substitution [23], which
appears to be due to W. W. Hansen [3], might be ex-
pected to work better, since, first, log 17, will do just
as well as I', when the T, are small compared to unity,
as then

) 14T ]}
Ogl—I‘t “f
J

log V,
8 (58)

constant X T,

and, second, log 17, can increase indefinitely with in-
creasing log R and still be physically realizable.

The first-order theory generally gives good results in
the pass band when log 17, is substituted for I',, pro-

end of Section IX.)

Example 4: Design a six-section quarter-wave trans-
former of 40-per cent bandwidth for an impedance
ratio of R=10. [This transformer will have a VSWR
less than 1.005 in the pass band, from (8) and (18) and
Table 1.]

Here (2/w,)"*=125, which is appreciably greater
than R=10. Therefore, we can proceed by the first-
order theory. From Table VIII,

log Vitlog Vitlog Vatlog Vi = 1:5.4270:12.7903:16.7247

 log V4 log "4

h logR_ 7

> log V.,
=1

Since log R=1og 10=1,

V= V; = antilog (0.01813) = 1.0426
Py = Ve = antilog (5.4270 X 0.01813) = 1.254
"3 = 175 = antilog (12.7903 X 0.01813) = 1.705
and
V4 = antilog (16.7247 X 0.01813) = 2.010.
Hence,
Zi=V, = 10426
Zs = V271 = 1308
Zy=VyZy = 21228
Zy = V473 = 1485
Zy = VsZy= 1.5
Zo = VeZs = 9.60
R = Z; = ViZy = 10.00.

Relation to Dolph-Chebyshev Antenna Adrrays

When R is small, nuinerical solutions of certain cases
up to n =39 may be obtained through the use of existing
antenna tables. The first-order Chebyshev transformer
problem is mathematically the same as Dolph’s solu-
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TABLE IX
TRANSFORMER-ARRAY CORRESPONDENCES

Chebyshev Transformer

Dolph-Chebyshev Array

First-order theory
Synchronous tuning
Frequency
Transformer length
Pass band

Stop band
Reflection coefficient
Number of steps (n--1)
M(n, wq)

10 10g10 M

log V.,

Optical diffraction theory

Uniform phase (or linear phase taper)
Angle in space

Array length

Side-lobe region

Main lobe

Radiation field

Number of elements

Side-lobe ratio

Side-lobe level in db

Element currents, [;

tion [24] of the linear array, and the correspondences
shown in Table IX may be set up.

The calculation of transformers from tables of graphs
or array solutions is best illustrated by an example.

Example 5: Design a transformer of impedance ratio
R=35 to have a maximum VSWR, V,, of less than 1.02
over a 140-per cent bandwidth (w,=1.4).

It is first necessary to determine the minimum num-
ber of sections. This is easly done as in Example 1,
using Table I, and is determined to be n=11.

Applying the test of (48),

2 nl2
<ﬁ> - 50,
Wq

whereas R is only 5, and so we may expect the first-
order theory to furnish an accurate design.

The most extensive tables of array solutions are con-
tained in [25]. (Some additional tables are given in
[26].) We first work out M from (8), (18), and (16),
and find M =8000. Hence the side-lobe level is

10 logio M = 39.0 db.

From Table 11 in [25], the currents of an n4+1=12 ele-
ment array of side-lobe level 39 db are respectively
proportional to 3.249, 6.894, 12.21, 18.00, 22.96, 25.82,
25.82,22.96, 18.00, 12.21, 6.894, and 3.249. Their sum is
178.266. Since the currents are to be proportional to
log T, and since R=35, log R=0.69897, we multiply
these currents by 0.69897/178.266=0.003921 to obtain
the log V,. Taking antilogarithms yields the 7, and,
finally, multiplying yields the Z; [Compare Ex. 4.]
Thus Z, through R are respectively found to be 1.0,
1.0298, 1.09585, 1.2236, 1.4395, 1.7709, 2.2360, 2.8233,
3.4735, 4.0861, 4.5626, 4.8552, and 5.0000. The re-
sponse of this transformer is plotted in Fig. 7, and is
found to satisfy the specifications almost perfectly.
In antenna theory, one is usually not interested in
side-lobe ratios in excess of 40 db; this is as far as the
antenna tables take us. Only fairly large bandwidths
can be calculated with this 40-db limit. For example,
Table I shows that for =2 this limits us to w,>0.18;

7 5 T .
G2 04 56 08 10 B & 76 8 z
NORMALIZED FREQUENCY

Fig. 7—Analyzed performance of transformer
designed in Example 5.

for n=4, to w,>0.67; for n=8, to w,>1.21; and for
n=12, to w,>1.52. A general formula for all cases has
been given by G. J. Van der Maas [27] which becomes,
when adapted to the transformer,

I‘1_ 7 ii‘f(n—i—l—i)(i—Z ptrtr) s
N nt+1-—-1.2 r+1 7 >C (59)

for 2<:<(n/2)41, where ¢ is given by (49), and <a>
are the binomial coefficients b

<a>_ al
b/)  bla— )

VII. ArPROXIMATE DESIGN FOR UP TO
MODERATELY LARGE R

Modified First-Order Theory

In Section VI, a first-order theory was presented
which held for “small” values of R as defined by (48). In
Section VIII, there will be presented formulas that
hold for “large” values of R as defined by (73). This
leaves an intermediate region without explicit formulas.
Since exact numerical solutions for maximally flat trans-
formers of up to eight sections have been tabulated
(Tables VI and VII), these might be used in conjunc-
tion with either the “small R” or the “large R” theories
to extend the one upward or the other downward in R,
and so obtain more accurate solutions for Chebyshev

(60)
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TABLE X
TABLE OF +;
Band- | ne=2 n=3 n=4 n=35
width, | ‘ [ e
W, 1‘ =1 1=2 =1 =2 1=1 ;‘ i=2 7=3 i=1 i=2 =3
0 ‘ 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
0.2 1.01237 0.98762 1.01869 0.99376 1.02501 0.99992 0.99176 1.03135 1.00611 0.99380
0.4 ! 1.05014 0.94985 1.07715 0.97428 1 10418 0.99873 0.96695 1.13188 1.02379 0.97491
0.6 1.11488 0.88511 1.18283 0.93905 1.25124 0.99336 0.92510 1.32337 1.05062 0.94234
0.8 ] 1.20882 0.79117 1 34975 0.88341 1.49381 0.97770 0.86512 1.65171 1.08104 0.89430
1.0 1.33333 0.66666 1.60000 0.80000 1.88235 0.94117 0.78431 2.20689 1.10344 0.82758
1.2 1.48643 0.51356 1.96415 0.67861 2.50599 0.86571 0.67690 3.16718 1.09426 0.73614
1.4 1.65823 0.34176 2.47172 0.50942 3.51015 0.72344 0.53202 4.88788 1.00739 0.60751
1.6 1.82565 0.17434 3.10921 0 29692 5.05657 0.48290 0.33727 7.99760 0.76377 0.41835
1.8 | 1.95226 0.04773 3.72647 0.09117 6.97198 0.17063 0.11515 12.82256 0.31389 0.16079
2.0 ‘ 2.0 | 0 4.0 0 8.0 0 0 16.0 0 0
Band- n=6 \ n=7T n=8
width, |—— - - - —
Wy 1= 1=2 = 1=4 =1 1=2 ’ 1=3 \ =4 =1 =2 =3 i=4 =35
0 1.00000] 1.00000] 1.00000/ 1.00000; 1.00000]/ 1.00000, 1.00000{ 1.00000; 1.00000/ 1.00000; 1.00000] 1.00000 1.00000
0.2 1.03774] 1.01235] 0.99718} 0.99258| 1.04417) 1.01861} 1.00200| 0.99381] 1.05063| 1.02492} 1.00701} 0.99643| 0.99294
0.4 1 16027) 1.04946| 0.98935! 0 97026/ 1.18937| 1.07581] 1.00731| 0.97503] 1.21921| 1.10279| 1.02757| 0.98531| 0.97167
0.6 1.39965) 1 11118] 0.97375| 0.93268 1.48033] 1.17521] 1.01374] 0.94298| 1.56565] 1.24295] 1.05997| 0.96526] 0.93590
0.8 1.82608| 1.19520| 0.94743] 0.87911] 2.01888| 1.32138| 1.01702 0.89639| 2.23202 1.46088| 1.10036| 0.93387| 0.88496
10 2.58585 1.29292| 0.90505| 0.80808| 3.02958| 1.51479; 1.00986; 0.83313] 3.54939| 1.77469| 1.14087| 0.88734| 0.81762
1.2 3.99301] 1.37951) 0.83778] 0.71630] 5.03077] 1.73806; 0.97968] 0.74941] 6.33721} 2.18942} 1.16586| 0.81969| 0.73143
1.4 6.75454] 1.39211) 0.72904] 0.59571 9.30719] 1.91834| 0.90301| 0.63717| 12.81069| 2.61044| 1.14312| 0.72021] 0.62075
1.6 12.45111) 1.18908 0.54369] 0.42589| 19.31633| 1.83488| 0.72848| 0.47546| 29.51655] 2.81846]| 0.99755| 0.56381| 0.46943
1.8 23 25581| 0.56899| 0.23596) 0.17906] 41.69381| 1.02030| 0.35677) 0.21919] 74.08908| 1.81333] 0.54984; 0.28471) 0.23041
20 (320 | 0 0 0 6+ 0 0 0 4] 128.0 0 0 0 0

transformers with R in this intermediate region. This
idea is applied here to the first-order (“small R”) theory
only, as will be explained. It extends the range of the
first-order theory from the upper limit given by (48)
up to “moderately large” values of R as defined by

2 7
r<()
Wq

and gives acceptable results even up to the square of

this limit,
2 2n
e
Wy

[Compare (73).] Of course, when R is less than specified
by (48), there is no need to go beyond the simpler first-
order theory of Section VI.

The first step in the proposed modification of the
first-order theory is to form ratios of the T',, which will
be denoted by +y,, with the property that

(61)

(62)

[ T, B [ T, ] 63
wfl -7 {ZLT‘—I (632)
Z T, 1Chebyshev 1 Z I, kmaximally flat

L =1 transformer =1 transformer

The v, are functions of n (the same 7 for both trans-
formers) and w, (the bandwidth of the desired Che-
byshev transformer). The substitution of log 1, for T,
will again be used, and therefore Y "M T is replaced by
log R, according to (43). If now we choose R to be the

same for both the Chebyshev transformer and the cor-
responding maximally flat transformer, then (63a) re-
duces to

= v,(log V) maximally flat (63b)

transformer

(log V.)Cnebyshev
transformer
The modification to the first-order theory now con-
sists in using the exact log 17, of the maximally flat
transformer where these are known (Tables VI and
VID. The v, could be obtained from (63) and Table
VIII, but are tabulated for greater convenience in
Table X. The numbers in the first row of this table are,
by definition, all unity. The application of this table is
illustrated bv an example given below.

Range of Validity.of the Modified First-Order Theory

The analyzed performance of a first-order design,
modified as explained above, and illustrated in Example
6, agrees well with the predicted performance, provided
that R satisfies (61) or at least (62). (In this regard,
compare the end of Section 1X.)

As a rough but useful guide, the first-order modifica-
tion of the exact maximally flat design generally gives
good results when the pass-band maximum VSWR is
less than or equal to (14w,?), where w, is the equal-
ripple quarter-wave transformer bandwidth (1). By
definition, it becomes exact when w,=0.

Example 6: In Example 1 it was shown that a quarter-
wave transformer of impedance ratio R =100, fractional
bandwidth, w,=1.00, and maximum pass-band VSWR
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of less than 1.15 must have at least six sections (#=6).
Calculate the normalized line impedances Z; of this
quarter-wave transformer. Predict the maximum pass-
band VSWR, V,. Then, also find the bandwidth wa
and normalized line impedances, Z./, of the correspond-
ing half-wave filter.

First, check that R is small enough for the trans-
former to be solved by a first-order theory. Using (48),

2 nl2
(-) — 2 =38
Wq

Therefore the unmodified first-order theory would not
be expected to give good results, since =100 is con-
siderably greater than 8. Using (61) and (62),

()
()

Therefore the modified first-order theory should work
quite well, although we may expect noticeable but not
excessive deviation from the desired performance since
R =100 is slightly greater than (2/w,)"=64.

From Table VI and Fig. 2, or from Table VII and
(47), it can be seen that a maximally flat transformer
of six sections with R =100 has

(64)

64

i

(65)

It

2048

Vi=V;= 1094 . log Vi= 00391
Ve = Ve = 1610 . log Vs = 0.2068

e & . (66)
V= Vs = 2802 . logV,= 04612
V.= 3851 . log Vi = 0.5856)

The log VSWR’s of the required 100-per cent band-
width transformer are now obtained, according to
(63b), multiplying the log ¥’s in (66) by the appropri-
ate values of v in Table IX:

log V; = 0.0391 X 2.586 = 0.1011)

log Vo = 0.2068 X 1.293 = 0.2679 (67
/
log V3 = 0.4612 X 0.905 = 0.4170
log V4, = 0.5856 X 0.808 = 0.4733
V= V.= 1262
sz = Vﬁ = 1.853
. (68)
V= Vs = 2.612
V= 2974

Now this product V1V, + + - V7 equals 105.4, instead of
100. It is therefore necessary to scale the 17, glightly
downward, so that their product reduces to exactly 100.
The preferred procedure is to reduce V; and V7 by a
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factor of (100/105.4)Y2 while reducing 15, - - -, Vs by
a factor of (100/105.4)'/8. It can be shown [see Example
8 and (74) ] that this type of scaling, where V;and Vi,
are scaled by the square root of the scaling factor* for
Vy, -+, V,, has as its principal effect a slight increase
in bandwidth while leaving the pass-band ripple almost
unaffected. Since the approximate designs generally
fall slightly short in bandwidth, while coming very
close to, or even improving on, the specified pass-band
ripple, this method of scaling is preferable. Subtracting
0.0038 from log V; and 0.0076 from the remaining log
17, in (67) gives the new 1,

Vi=V:= 1251

Vg = Vﬁ = 1821
(69)

V3 = V5 - 2566

Vy= 20922

and for the corresponding normalized line impedances
of the quarter-wave transformer (Fig. 2),

Zy = 1.0
Zi= Vi= 1251
Zy=ZiVy= 2280
Zy=Z;Vs= 5850
(70)
Zy=ZiVi= 17.10
Zs = ZVs = 4391
Zs = ZsVs = 79.94
R = ZV7 = 100.00

We note in passing that the product of the VSWR’s
before reduction was 105.4 instead of the specified 100.
If the discrepancy between these two numbers exceeds
about 5 to 10 per cent, the predicted performance will
usually not be realized very closely.

The maximum insertion loss and VSWR in the pass
band predicted from (16) and Table I are

g, = 0.0025, or 0.011 db

Therefore, by (18),

V, = 1.106. (71)

The computed plot of V against normalized fre-
quency, f, of this transformer (or against N,/\, if the
transformer is dispersive) is shown in Fig. 8. The band-
width is 95 per cent (compared to 100 per cent pre-
dicted) for a maximum pass-band VSWR of 1.11.
(Notice that the response has equal ripple heights with
a maximum VSWR of 1.065 over an 86-per cent band-
width.)

~ *lIn general, if R" and R are respectively the trial and desired
impedance ratios, then for an nth-order transformer, the scaling

factor is Yw~R/R’ for Vi, Vi, - - » Vo, and W22 VR/R’ for V; and
Vot
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The bandwidth wj, of the half-wave filter for a maxi-
mum VSWR of 1.11 will be just half the corresponding
bandwidth of the quarter-wave transformer, namely

47.5 per cent. Its normalized line impedances are (see
Fig. §):

Zy = 1.0 (input)
Z) = Vi = 1.251

Zy = Z{/V; = 0.6865

Zs =27y Vy= 1764

Zd = Z{/V. = 0.604

Zs =74y Vy= 1550

Zs = 75 /Vs = 0.850

Z7 = Z¢ Vi = 1.065 (output)

(72)

It should be noticed that the output impedance, Z+,
of the half-wave filter is also the VSWR of the filter or
transformer at center frequency [15] (Fig. 8).

In this example it was not necessary to interpolate
from the tables for the 1”, or the Z,. When R is not
given exactly in the tables, the interpolation procedure
explained at the end of Section 1V should be followed.

Fig. 8—Analyzed performance of transformer
designed in Example 6.

VIII. ArPPROXIMATE DEsiecN WHEN R 1s LARGE

Theory

Riblet’s procedure |5], while mathematically elegant,
and although it holds for all values of R, is computa-
tionally very tedious, and the accuracy required for
large R can lead to difficulties even with a large digital
computer. Collin’s formulas [4] are more convenient
(Section 1V) but do not go beyond n=4 (Tables II to
V). Riblet’s procedure has been used to tabulate maxi-
mally flat transformers up to =8 (Tables VIII and
IX). General solutions applicable only to “small R”
have been given in Sections VI and VII, and are tabu-
lated in Tables VIII and X. In this part, convenient
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formulas will be given which become exact only when R
is “large,” as defined by

2 n
R> <——> .
Wq

These solutions are suitable for most practical filter
applications (but not for practical transformer applica-
tions).

For “large R” {(or small w,), stepped impedance trans-
formers and filters may be designed from low-pass,
lumped-constant, prototype filters [2], [28], whose
normalized reactive elements are denoted by g; (:=1,

-, #). The transformer or filter step VSWR’s are
obtained from

(73)

1 g ]
Vl = Vn+1 =
T W,
16 ' : (74
Vz = - gi~1gi; When 2 g 12 S "
7T2 q2
(V. large, w, small), J

where ;' is the radian cutoff frequency of the low-pass
prototype and w, is the quarter-wave transformer frac-
tional bandwidth [given by (1) for Chebyshev trans-
formers and (9) or (10) for maximally flat transformers |.
Again, the half-wave-filter bandwidth, ws, is equal to
one-half w, [see (24)].

The V; and T', are symmetrical about the center in
the sense of (41) and (42), although the g, need not be
similarly related.

With the tables of [28], it is easy to use (73). One
should, however, always verify that the approxima-
tions are valid, and this is explained next. Procedures
to be used in borderline cases, and the accuracy to be
expected, will be illustrated by examples.

Range of Validity

The criteria given in (48) and (61) are reversed.
The validity of the design formulas given in this part
depends on R being large enough. It is found that the
analyzed performance agrees well with the predicted
performance (after adjusting R, if necessary, as in
Examples 8 and 9) provided that (73) is satisfied; R
should exceed (2/w,)" by preferably a factor of about
10 or 100 or more (compare end of Section IX). The
ranges of validity for “small R” and “large R” overlap
in the region between (62) and (73), where both pro-
cedures hold only indifferently well. (See Example 9.)

For the maximally flat transformer, (73) still applies
fairly well, when w,, sq» is substituted for w,.

As a rough but useful guide, the formulas of this sec-
tion generally result in the predicted performance in
the pass band when the pass-band maximum VSWR
exceeds about (1+4w,?). This rule must be considered
indeterminate for the maximally flat case (w,=0),
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when the following rough generalization may be sub-
stituted: The formulas given in this section for maxi-
mally flat transformers or filters generally result in the
predicted performance when the maximally flat quarter-
wave transformer 3-db fractional bandwidth, w,, sab, 1s
less than about 0.40.5 The half-wave filter fractional
bandwidth, 1w, sas, must of course be less than half of
this, or 0.20.

After the filter has been designed, a good way to
check on whether it is likely to perform as predicted is
to multiply all the VSWR’s, V1 Vs - + + 17,14, and to com-
pare this product with R derived from the performance
specifications using Table I and (13). If they agree
within a factor of about 2, then after scaling each 17 so
that their VSWR product finally equals R, good agree-
ment with the desired performance may be expected.

Three examples will be worked out, illustrating a
narrow-band and a wide-band design, and one case
where (73) is no longer satisfied.

Example 7: Design a half-wave filter of 10-per cent
fractional bandwidth with a VSWR ripple of 1.10, and
with at least 30-db attenuation 10 per cent from center
frequency.

Here w,=0.1, .. w,=0.2. AVSWR of 1.10 corresponds
to an insertion loss of 0.01 db. From (33) and (31), or
(17) and (12),

TWh
Mo = sinT = sin 90 = 0.1564.

At 10 per cent from center frequency, by (32),

o' sin ¢ sin 172°
= = = 1.975.
! o 0.1564

From Fig. 2 of [2], or from [21], pp. 196 and 197, a 5-
section filter would give only 24.5 db at a frequency 10
per cent from band-center, but a six-section filter
will give 35.5 db. Therefore, we must choose =6 to
give at least 30-db attenuation 10 per cent from center
frequency.

The output-to-input impedance ratio of a six-section
quarter-wave transformer of 20 per cent fractional
bandwidth and 0.01-db ripple is given by Table Tand
(13) and vields (with &,=0.0023 corresponding to 0.01-
db ripple)

R = 1.08 X 1010, (75)
Thus R exceeds (2/w,)" by a factor of 4X10%, which
by (73) is ample, so that we can proceed with the
design.
From [28], for #=6 and 0.01-db ripple (correspond-

5 Larger 3-db fractional bandwidths can be designed accurately
for small #, for example up to about wg, 3a, =0.60 for 7 =2.
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ing to a maximum VSWR of 1.10), and from (74),

V1 = V7 = 4,98
Vz = Ve = 430
(76)
V3 = V5 = 92.8
Vy=105.0

This yielded the response curve shown in Fig. 9, which
is very close to the design specification in both the pass
and stop bands. The half-wave filter line impedances
are

zZy = 1.0  (input)
Z{ = V= 4.98
Zd = Z//V.= 0.1158
Zs =7y Vy=10.74
(77)
Z¢ = Z{/Vi= 0.1023
Zi =27/ Vs= 9.30
Zd = 7 /Vs = 0221 |
Z) =27Z¢ V= 110 (output) \l

Note that Z;"=1.10 is also the VSWR at center fre-
quency (Fig. 10).

TRANSDUCER LOSS RATIO — L ldb)

55 16 T05
NORMALIZED FREQUENCY

Fig. 9—Analyzed performance of half-wave
filter designed in Example 7.

TRANSOUCER LOSS— L, (db)

NORMALIZED FREQUENCY

Fig. 10—Analyzed performance of two half-wave
filters designed in Example 8.
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The corresponding quarter-wave transformer has a
fractional bandwidth of 20 per cent; its line impedances
are

Il

Zo 1.0 . (input)
Z1 - Vl - 498
Zo = Z1Ve =214 X 10?

Il

Zy= Z,V; = 1987 X 10* (78)
v 7
Zs = ZV5 = 19315 X 10°

Zﬁ = Z5V6 = 830 >< 109
R = Z7 = Z6V7 = 4135 >< 10]0 (output)

which is within about 13 per cent of Rin (75). Therefore,
we would expect an accurate design, which is confirmed
by Fig. 9. The attenuation of 35.5 db at f=1.1 is also
exactly as predicted.

Example 8: It is required to design a half-wave filter
of 60 per cent bandwidth with a 2-db pass-band ripple.
The rejection 10 per cent beyond the band edges shall
be at least 20 db.

Here w,=0.6, . w,=1.2. As in the previous example,
it is determined that at least six sections will be re-
quired, and that the rejection 10 per cent beyond the
band edges should then be 22.4 db.

From (13) and Table I it can be seen that, for an
exact design, R would be 1915; whereas (2/w,)" is 22.
Thus R exceeds (2/w,)* by a factor of less than 100,
and therefore, by (73), we would expect only a fairly
accurate design with a noticeable deviation from the
specified performance. The step VSWR’s are found by
(74) to be

V1 = V7 = 3028W
Vo= Vg= 2091 [ (79)
Vy=TV5;=3.93 JJ

Vy= 106

Their product is 4875, whereas from (13) and Table I,
R should be 1915. The 17, must therefore be reduced.
As in Example 6, we shall scale the 1/, so as to slightly
increase the bandwidth, without affecting the pass-
band ripple. Since from (74) 17 and V,4; are inverselyv
proportional to w, whereas the other (z—1) junction
VSWR’s, namely 17, V75, - - - 17, are inversely propor-

tional to the square of w,, reduce 1; and T7 by a
{actor of
1915\ /2 1915\ /12
<—~) - <—— — 0.9251,
4875 4875
and Vs through Vs by a f{actor of
1915\ /» 1915\1/6
(25" (Y s
4875 4875
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(Compare Example 6.) This reduces R from 4875 to
1915. Hence,

Vi= Ty = 2.803
Vo= Ve = 2.486
. (80)
Vy= 3470)
The half-wave filter line impedances are now
Zy = 1.0 (input)
Z) = 2.803
Zy = 1128
Z3 = 3.788
(81)
Z{ = 1.092
Zs = 3.667
Zs = 1475
Z; = 4135 (output)

Since the reduction of R, from 4875 to 1915, is a rela-
tively large one, we may expect some measurable dis-
crepancy between the predicted and the analyzed per-
formance. The analyzed performance of Designs (79)
and (80), before and after correction for R, are shown
in Fig. 10. For most practical purposes, the agreement
after correction for R is quite acceptable. The band-
width for 2-db insertion loss is 58 per cent instead of
60 per cent; the rejection is exactly as specified.

Discussion: The half-wave filter of Example 7 re-
quired large impedance steps, the largest being 17y=105.
It would therefore be impractical to build it as a
stepped-impedance filter; it serves, instead, as a proto-
type for a reactance-coupled cavity filter. This is typi-
cal of narrow-band filters. The filter given in the second
example, like many wide-band filters, may be built
directly from (80) since the largest impedance step is

4 =3.47 and it could be constructed after making a
correction for junction discontinuity capacitances
[3], [1]. Such a filter would also be a low-pass filter.
(See Fig. 6). It would have identical pass bands at all
harmonic frequencies, and it would attain its peak
attenuation at one-half the center frequency (as well
as at 1.5, 2.5, etc., times the center frequency, as shown
in Fig. 6.) The peak attenuation can be calculated from
(8) and (75). In Example 7 the peak attenuation is 100
db, but the impedance steps are too large to realize in
practice. In Example 8 the impedance steps could be
realized, but the peak attenuation is only 27 db. Half-
wave filters are therefore more useful as prototypes for
other filter-types which are easier to realize physically.
If shunt inductances or series capacitances were used
(in place of the impedance steps) to realize the 17; and to
form a direct-coupled-cavity filter, then the attenuation
below the pass band is increased and reaches infinity at
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TABLE XI
THE THREE DESIGNS OF EXAMPLE 9

A—*“Large R” Approximation.
B——“Small R” Approximation.
C—Exact Design.
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Design
A B C
Vi=Vs 1.656 1.780 1.936
Vo=Vs 2.028 2.091 1.988
Vs 2.800 2.289 2.140

A —— “LARGE-R" APPROXIMATION
B ~-—"SMALL~R" APPROXIMATION

EXACT DESIGN

il 3 Z
NORMALIZED FREQUENCY

Fig. 11—Analyzed performance of three quarter-wave
transformers designed in Example 9.

zero frequency; the attenuation above the pass band is
reduced, as compared with the symmetrical response of
the half-wave filters (Figs. 9 and 10). The derivation of
such filters from the quarter-wave transformer or
half-wave filter prototypes will be presented in a future
paper.

Example 9: This example illustrates a case when
neither the first-order theory (Section VI) nor the
method of this part are accurate, but both may give
usable designs. These are compared to the exact design.

It is required to design the best quarter-wave trans-
former of four sections, with output-to-input imped-
ance ratio R=31.6, to cover a fractional bandwidth of
120 per cent.

Here n=4 and w,=1.2. From (13) and Table I, the
maximum VSWR in the pass band is 2.04. Proceeding
as in the previous example, and after reducing the
product V1V, - - - V5 to 31.6 (this required a relatively
large reduction factor of 4), yields Design A shown in
Table XI. Its computed VSWR is plotted in Fig. 11
(continuous line, Case A).

Since R exceeds (2/w,)" by a factor of only 4 [see
(73)], the first-order procedure of Section VII may be
more appropriate. This is also indicated by (62), which
is satisfied, although (61) is not. Proceeding as in
Example 6 yields Design B, shown in Table XI and
plotted in Fig. 11 (dash-dot line, Case B).

In this example, the exact design can also be ob-
tained from Tables IV and V, by linear interpolation of
log V against log R. This gives Design C shown in Table

September

XI and plotted in Fig. 11 (broken line, Case C).

Designs A and B both give less fractional bandwidth
than the 120 per cent asked for, and smaller VSWR
peaks than the 2.04 allowed. The fractional bandwidth
(between 7 '=2.04 points) of Design A is 110 per cent,
and of Design B is 115 per cent, and only the exact
equal-ripple design, Design C, achieves exactly 120 per
cent. It is rather astonishing that two approximate de-
signs, one based on the premise R=~1, and one on
R— o, should agree so well.

IX. AsymrproTiCc BEHAVIOR AS R TENDS TO INFINITY

Cohn [2] developed formulas for direct-coupled cav-
ity filters with reactive discontinuities. His formulas
become exact only in the limit as the bandwidth tends
to zero. This is not the only restriction. Cohn’s formulas
[2] for transmission-line filters, like our formulas in
(74), hold only when (73) or its equivalent is satisfied.
[Define the V, as the VSWR'’s of the reactive discon-
tinuities at center frequency; R is still given by (43); for
w, in (73), use twice the filter fractional bandwidth in
reciprocal guide wavelength.| The variation of the V,
with bandwidth is correctly given by (74) for small
bandwidths. These formulas can be adapted for design
of both quarter-wave transformers and half-wave filters,
as in (74) and hold even better in this case than when
the discontinuities are reactive. This might be expected
since the line lengths between discontinuities for half-
wave filters become exactly one-half wavelength at
band-center, whereas they are only approximately 180
electrical degrees long in direct-coupled cavity filters.
(See Fig. 14 of [2].)

Using (74) and the formulas [2] for the prototype
element values g; (1=1, 2, - - -, ), one can readily de-
duce some interesting and useful results for the V; as R
tends to infinitv. One thus obtains, for the junction
VSWR’s of Chebyshev transformers and filters,

o [2i=3 o [2i—1 )
sin|{ ——— 7 sm( - )
2n 2n
1—1

™
22
)

sin?

(
(2

< 4 >2 2n
h TWh

sin

<2i— 1 )
™
2n
. —1
sin? T
n

. (82)
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TABLE XII
w2
TABLE OF (—i) lim (V,) FOR SMALL w,
2 /R
[Vz = Vn+2—i]
n =2 =3 1=4 1=5 1=6 7=7 1=8
2 0.81056
3 1.08075
4 1.14631 1.38372
5 1.17306 1.44999
6 1.18675 1.47634 1.51254
7 1.19474 1.48981 1.53668
8 1.19981 1.49773 1.54885 1.55943
9 1.20325 1.50282 1.55596 1.57073
10 1.20568 1.50631 1.56052 1.57727 1.58146
11 1.20747 1.50880 1.56365 1.58145 1.58762
12 1.20882 1.51066 1.56589 1.58431 1.59153 1.59351
13 1.20987 1.51207 1.56757 1.58636 1.59419 1.59723
14 1.21070 1.51318 1.56886 1.58789 1.59610 1.59975 1.60081
200 T — — 1.7 T ‘ T T
P =8
. » |
020 =7
100 |~ — =6
sob = =8
80— - =7
70— - =6
€0 |— -— =5

@ o v o®wd
T T7
Ll

T

°
S
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a
T
|
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Fig. 12—V vs log R of {four-section transformer for all
fractional bandwidths in steps of 0.20.

The quantity

w 2
wy? lim (V) = <J> lim (V) (83)
R—w 2 R—w
is tabulated in Table X1II for ¢=2, 3, - - -, # and for

n=2,3,---, 14

We notice that for Chebyshev transformers and
filters, the V, (:#1, n+1) tend to finite limits, and
thus 17= V,4: tend to a constant times RY2, We also
see that

16
'ZU;.2V5 < ”—2 = 162115 (Z = 2,3, e
T

,n) (84)

for all n, and tends to 16/72 only in the limit ¢—>n/2—> .

o7
¢]

L I
04 08 1.2 XS] 20
QUARTER-WAVE TRANSFORMER FRACTIONAL BANDWIDTH wq

Fig 13—Limpg—.(wy/2)*V, plotted against fractional bandwidth for
transformers having up to four sections, and shown for small w,
up to eight sections.

For maximally flat transformers, the V, all tend to
infinity with R, but the quantities

Ay = A "
Ay = dppr = W
Vi ) <
‘/L:Rl/ (1=2,3---,n) (85)
tend toward finite limits given by
m
i 10— 2msia(2) |
B—x 2n l ,
(86)

C[2i—1 2i—3
lim 4, = 22(—Dingin 7 ) sin s
R 2n 2n

from which we see that

,r_]:nﬁl 1/2n]
Vl:V”“<<R> | ,
1% (87)
J

4n—1 1/n
R
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for all n. They tend toward the values on the right-
hand side only in the limit +—#/2— .

To show how a typical V7, approaches its asymptotic
value, the exact solution for 17, when # =4 is plotted in
Fig. 12 for all fractional bandwidths w, in steps of 0.20.
It is seen that each curve consists of two almost linear
regions with a sharp knee joining them. In the sloping
region above the origin (“small R”), the approximations
of Sections VI or VII apply; in the horizontal region
(“large R”"), the approximations of Section VIII apply.
These two sets of approximations probably hold as well
as they do because the knee region is so small.

The exact asymptotic values of w2V, = (w,/2)?V, are
plotted against w, in Fig. 13. If (82) were exact instead
of approximate, then all of the curves would be hori-
zontal straight lines. As it is, (82) gives the correct value
only on the w,=0 axis. As the bandwidth increases,
w2V, departs from the value at w=0 slowly at first,
then reaches a minimum, and finally all curves pass
through unity at w,=2(w,=1). The values of (w,/2)2V,
at w,=0 up to n=238 are also shown in Fig. 13. They all
lie below the value 16/72=1.62115, and may be expected
to exhibit the same sort of general behavior as do the
curves up to =4, for which the exact solutions were
obtained from (37) to (39).

The asymptotic values of the V, for =2, 3, - - - | n,
and for a given fractional bandwidth, are seen to be
fairly independent of %, on examination of (82), Table
XII, or Fig. 13. It follows that the same is true of
Vi/vR="V,1/vR. Thus, as R increases indefinitely,
so do V; and V,41; on the other hand for “small R,”
Vi2 and 1,442 are less than the other 7, (nof squared)
for small and moderately wide fractional bandwidths
(up to about 100 per cent bandwidths, by Table VIII).
If we assume that in the knee region (Fig. 12) V2= 1,4.2
are of the order of the other V7, then in the knee region
Ris of the order of (17,)*, for any i#1, n+1. From (74),
R is therefore inversely proportional to (const. Xw,2)",
and from the previous remarks this constant of propor-
tionality is reasonably independent of #. Using Fig. 12
for example, the constant is very close to the value 3.
This leads to the magnitude formulas of (48), (61), and
(62), and (73), which have been confirmed by numerous
sample solutions.

X. CoNcLUSION

The theory of the quarter-wave transformer has been
reviewed and extended, and the major results have been
presented. The distinctions between ideal and nonideal
junctions, homogeneous and inhomogeneous trans-
formers, synchronous and nonsymchronous tuning, have
been brought out explicitly. The concept of half-wave
filters will be found useful in the design of direct-
coupled-cavity filters. Design formulas were presented,
numerical tables were given, methods of numerical cal-
culation were explained, and their use was illustrated
by several examples. Where exact solutions are not
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available, two approximate design procedures were
given: one is applicable where R is small enough, and
one where R is large enough. To help in obtaining ac-
curate numerical solutions, the connection between an-
tenna arrays and “small-R” transformers was utilized,
as was the connection between lumped-constant, low-
pass filters and “large-R” transformers.

An additional bibliography lists related topics not
covered in this paper.
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In-Line Waveguide Calorimeter for High-

Power Measurement*

M. MICHAEL BRADY{, MEMBER, IRE

Summary—The static in-line calorimeter measures the temper-
ature rise in the walls of a waveguide caused by the attenuation of
microwave power flowing through the waveguide. It is simple and
inexpensive and can be constructed so that it will fit on waveguide
already existing in a microwave system. The device should be reliable
because it uses no active circuitry. In addition, few mechanical prob-
lems are encountered in its use because the existing waveguide need
not be altered. The theory of the device is developed, and two experi-
mental S-band calorimeters using stainless steel waveguide and re-
sistance-wire bridge temperature indicators are described. The
measured sensitivity and time constant for both units fall within
the experimental error of confirming the theoretically predicted
figures.
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INTRODUCTION

HE HIGH-POWER measurement or monitoring
Tsohemes presently available, if not complete ab-

sorption devices, are usually reduced-signal sam-
pling devices in which a low-power meter is used. In
most low-level measurement schemes, however, the
background noise (ambient temperature fluctuations in
the case of the bolometer power meter) often determines
the ultimate resolution of the device. In a high-power
measurement system, on the other hand, the power level
present most often completely masks the low-power
background noise. It may then be less desirable to sam-
ple a high-power signal through a directional coupler
and to attenuate the sampled signal until it can be read
with conventional low-power meters than to use a



